已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点,
(1)求实数a的值;
(2)如果当时,不等式恒成立,求实数m的最大值;
(3)求证:
(1);(2)2;(3)详见解析.
【解析】
试题分析:(1)利用为奇函数,所以设,利用,求出时的,然后再求时的,再根据,求出,验证所求能够使是函数的一个极值点;(2)不等式恒成立,转化为恒成立,设,即求的最小值,求,再设,易求,当时,为增函数,最小, ,即逐步分析为单调递增函数,从而求得最小值.(3)通过代入(2)式恒成立不等式,变形放缩后得到,为出现(2)要证形式,所以令,则,然后将k=1,2, n,代入上式,累加,从而得出要证不等式.此题综合性较强.
试题解析:(1)由题知对定义域内任意,,为奇函数,
当时,,,
当时,
由题知:,解得,经验证,满足题意.
(2)由(1)知
当时,,令
则时,恒成立,转化为在恒成立.
令,,则,
当时,,在上单调递增.
当时,,在单调递增.
则若在恒成立,则
的最大值2.
(3)由(2)知当时,有,即
则
令,则
当时,;当时,;当时,;
当时,
将以上不等式两端分别相加得:
即.
考点:1.函数极值的应用;2.利用导数求最值;3.证明不等式的方法.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年浙江省杭州市七校高三上学期期中联考理科数学试卷(解析版) 题型:解答题
已知函数的定义域为,
(1)求;
(2)若,且是的真子集,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届辽宁朝阳高二下学期期中考试理科数学试卷(解析版) 题型:选择题
已知函数的定义域为,部分对应值如下表。的导函数的图像如图所示。
0 |
|||||
下列关于函数的命题:
①函数在上是减函数;②如果当时,最大值是,那么的最大值为;③函数有个零点,则;④已知是的一个单调递减区间,则的最大值为。
其中真命题的个数是( )
A、4个 B、3个 C、2个 D、1个
查看答案和解析>>
科目:高中数学 来源:2010-2011学年海南省海口市高三高考调研考试理科数学 题型:选择题
已知函数的定义域为,且,为的导函数,函数的图象如图所示.若正数,满足,则的取值范围是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com