精英家教网 > 高中数学 > 题目详情
20.f(x)=-2x2+4x-3的增区间为(-∞,1].

分析 求出二次函数的对称轴,利用开口方向,求出单调增区间即可.

解答 解:f(x)=-2x2+4x-3的对称轴为:x=1,开口向下,函数的单调增区间为:(-∞,1].
故答案为:(-∞,1].

点评 本题考查二次函数的现在的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某工厂每小时可以生产x千克的产品,且生产速度不变,为了使生产的效率达到最大,要求1≤x≤10,每小时生产产品可获得的利润为100(5x+10x2-x3)元.
(1)求生产a干克该产品所获得的利润;
(2)要是生产900千克该产品获得的利润最大,问:该厂应该选择何种生产速度?并求此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=|2-x|的单调递增区间是[2,+∞),单调递减区间是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知t为常数,函数f(x)=|x3-3x-t+1|在区间[-2,1]上的最大值为2,则实数t=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\sqrt{x+1}$的单调递增区间为[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:($\frac{2}{3}$a${\;}^{\frac{1}{5}}$b${\;}^{\frac{1}{3}}$)•($\frac{3}{4}$a${\;}^{\frac{3}{4}}$b${\;}^{\frac{2}{3}}$)÷(-2a${\;}^{\frac{2}{5}}$b${\;}^{\frac{1}{4}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)的定义域为R,且x∈R时,恒有f(x+1)=f(x),若函数F(x)=2x+f(x)在区间[2,3]上的值域为[-3,4],则F(x)在区间[-1,6]上的值域为[-9,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若方程x2sinα-y2cosα=1(0≤α<2π)表示焦点在x轴上的椭圆,则α的取值范围是(  )
A.($\frac{3}{4}$π,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.($\frac{π}{2}$,π)D.($\frac{π}{2}$,$\frac{3}{4}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=2x-3-$\sqrt{a-4x}$的值域为(-∞,$\frac{7}{2}$],则实数a的值为13.

查看答案和解析>>

同步练习册答案