精英家教网 > 高中数学 > 题目详情

【题目】某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4﹣i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

【答案】解:(Ⅰ)设选手甲第i次击中目标的事件为Ai(i=1,2,3),

依题可知:Ai与Aj(i,j=1,2,3,i≠j)相互独立
所求为:
(Ⅱ)ξ可能取的值为0,3,5,6.         
ξ的分布列为:

ξ

0

3

5

6

P

0.2

0.16

0.128

0.512

…(10分)(表中的每一个概率值各占1分)
∴Eξ=0×0.2+3×0.16+5×0.128+6×0.512=4.192.
【解析】(Ⅰ)甲恰好射击两次说明第一次射中,第二次未射中,设选手甲第i次击中目标的事件为Ai(i=1,2,3),则 , 而Ai与Aj(i,j=1,2,3,i≠j)相互独立,从而求出所求;
(II)ξ可能取的值为0,3,5,6,然后求出相应的概率,得到ξ的分布列,最后根据离散型随机变量的期望公式解之即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣mx(m∈R). (Ⅰ)当m=0时,讨论函数f(x)的单调性;
(Ⅱ)当b>a>0时,总有 >1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三个内角的度数可以构成等差数列”是“中有一个内角为”的(  )

A. 充分不必要条件B. 必要不充分条件

C. 充要条件D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的图像在点处的切线方程;

(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为缓解交通运行压力,某市公交系统实施疏堵工程.现调取某路公交车早高峰时段全程运输时间(单位:分钟)的数据,从疏堵工程完成前的数据中随机抽取5个数据,记为组;从疏堵工程完成后的数据中随机抽取5个数据,记为组.

组:

组:

(Ⅰ)该路公交车全程运输时间不超过分钟,称为“正点运行”.从两组数据中各随机抽取一个数据,求这两个数据对应的两次运行中至少有一次“正点运行”的概率;

(Ⅱ)试比较两组数据方差的大小(不要求计算),并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2sin(2x﹣)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,则b的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个底面水平放置的倒圆锥形容器,它的轴截面是正三角形,容器内有一定量的水,水深为. 若在容器内放入一个半径为 1 的铁球后,水面所在的平面恰好经过铁球的球心(水没有溢出),则的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]频数分别为8,2.

(1)求样本容量和频率分布直方图中的的值;

(2)估计本次竞赛学生成绩的中位数;

(3)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生,求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案