【题目】某工厂生产甲、乙两种产品所得利润分别为和(万元),它们与投入资金(万元)的关系有如下公式:,,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.
(Ⅰ)设对乙种产品投入资金(万元),求总利润(万元)关于的函数关系式及其定义域;
(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.
科目:高中数学 来源: 题型:
【题目】为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)
(Ⅰ)在答题卡上的表格中填写相应的频率;
(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;
(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某种商品在进价基础上每涨价1元,其销售量就减少10个,已知这种商品进价为40元/个,若按50元一个售出时能卖出500个.
(1)请写出售价x()元与利润y元之间的函数关系式;
(2)试计算当售价定为多少元时,获得的利润最大,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣1﹣x﹣ax2 . (Ⅰ)当a=0时,求证:f(x)≥0;
(Ⅱ)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;
(Ⅲ)若x>0,证明(ex﹣1)ln(x+1)>x2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(2-x)=f(x-1),且方程f(x)=x有两个相等的实根.
(1)求f(x)的解析式;
(2)设g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象关于点(-1,0)对称,且当x∈(-∞,0)时,成立,(其中f′(x)是f(x)的导数);若, ,,则a,b,c的大小关系是( )
A. a>b>c B. b>a>c C. c>a>b D. c>b>a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆C1:+=1,C2:+=1(a>b>0)有相同的离心率,F(﹣ , 0)为椭圆C2的左焦点,过点F的直线l与C1、C2依次交于A、C、D、B四点.
(1)求椭圆C2的方程;
(2)求证:无论直线l的倾斜角如何变化恒有|AC|=|DB|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络营销和电子商务的兴起,人们的购物方式更具多样化.某调查机构随机抽取8名购物者进行采访,4名男性购物者中有3名倾向于网购,1名倾向于选择实体店,4名女性购物者中有2名倾向于选择网购,2名倾向于选择实体店.
(1)若从8名购物者中随机抽取2名,其中男女各一名,求至少1名倾向于选择实体店的概率:
(2)若从这8名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:l可以多次出现),则n的所有不同值的个数为
A. 4 B. 6 C. 8 D. 32
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com