精英家教网 > 高中数学 > 题目详情
已知f(n)=cos
3
(n∈z+)
则f(1)+f(2)+…+f(6)-[f(7)+f(8)+…+f(12)]等于(  )
分析:把函数解析式中n换为n+6,变形后利用诱导公式cos(2π+α)=cosα进行化简,得到f(n+6)=f(n),即函数周期为6,把所求的式子中括号去掉后,重新结合,根据函数的周期化简,即可求出值.
解答:解:∵f(n+6)=cos
(n+6)π
3
=cos(2π+
3
)=cos
3
=f(n),
∴f(1)+f(2)+…+f(6)-[f(7)+f(8)+…+f(12)]
=[f(1)-f(7)]+[f(2)-f(8)]+…+[f(6)-f(12)]
=[f(1)-f(1+6)]+[f(2)-f(2+6)]+…+[f(6)-f(6+6)]
═[f(1)-f(1)]+[f(2)-f(2)]+…+[f(6)-f(6)]
=0.
故选A
点评:此题考查了三角函数的周期性及其求法,其中根据题意利用了诱导公式得出f(n+6)=f(n)是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx)(ω>0).若f(x)图象中相邻的对称轴间的距离不小于
π
2

(1)求ω的取值范围
(2)在△ABC中,a,b,c分别为角A,B,C的对边.且a=
3
,b+c=3,f(A)=1,当ω最大时.求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为二次函数,不等式f(x)+2<0的解集为(-1,
1
3
),且对任意α,β∈R恒有f(sinα)≤0,f(2+cosβ)≥0.数列an满足a1=1,3an+1=1-
1
f′(an)
(n∈N×
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设bn=
1
an
,求数列bn的通项公式;
(Ⅲ)若(Ⅱ)中数列bn的前n项和为Sn,求数列Sn•cos(bnπ)的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)图象中相邻的两条对称轴间的距离不小于π.
(I)求ω的取值范围;
(II)在△ABC中,a,b,c分别为角A,B,C的对边,a=
7
,S△ABC=
3
2
,当ω取最大值时,f(A)=1,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
m
n
,设ω>0,
m
=(sinω x+cosω x, 
3
cosω x)
n
=(cosω x-sinω x,  2sinω x)
,若f(x)图象中相邻的两条对称轴间的距离等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,a=
3
S△ABC=
3
2
.当f(A)=1时,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cosx,-sinx),
n
=(cosx,sinx-2
3
cosx),x∈R
,令f(x)=
m
n

(1)当x∈(0,
π
2
)
时,求f(x)的值域;
(2)已知f(
α
2
)=
2
3
,求cos(2α-
2
3
π)
的值.

查看答案和解析>>

同步练习册答案