精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
已知函数,存在实数满足下列条件:
;②;③
(1)证明:
(2)求b的取值范围.


(1)略
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知:函数(a、b、c是常数)是奇函数,且满足
(1)求a、b、c的值;
(2)试判断函数f(x)在区间(0,)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)求函数的单调区间及极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函数y=f(x)图像上两点,且线段P1P2中点P的横坐标为
(1)求证P的纵坐标为定值;   (4分)
(2)若数列{}的通项公式为=f()(m∈N,n=1,2,3,…,m),求数列{}的前m项和;    (5分)
(3)若m∈N时,不等式横成立,求实数a的取值范围。(3分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(1)当时,求函数的单调区间;
(2)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知集合是同时满足下列两个性质的函数组成的集合:
在其定义域上是单调增函数或单调减函数;
②在的定义域内存在区间,使得上的值域是
(1)判断函数是否属于集合?并说明理由.若是,则请求出区间
(2)若函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)已知函数
(1)判断函数的奇偶性;
(2)若在区间是增函数,求实数的       取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)判断的奇偶性并证明;
(2)若的定义域为[](),判断在定义域上的增减性,并加以证明;
(3)若,使的值域为[]的定义域区间[]()是否存在?若存在,求出[],若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设,其中,且为自然对数的底)
(1)求的关系;
(2)在其定义域内的单调函数,求的取值范围;
(3)求证:(i) 
(ii) ()。

查看答案和解析>>

同步练习册答案