精英家教网 > 高中数学 > 题目详情

【题目】已知圆的方程为

1)求过点且与圆相切的直线的方程;

2)直线过点,且与圆交于两点,若,求直线的方程;

【答案】(1) (2)

【解析】

1)当斜率不存在时,满足题意;当斜率存在时,设,利用圆心到直线距离等于半径可构造方程求得;综合两种情况得到结果;

2)由(1)知斜率存在,设,由垂径定理可知,从而构造出关于的方程,解方程求得结果.

1)当斜率不存在时,直线方程为,与圆相切,满足题意;

斜率存在时,设直线方程为:,即

圆心坐标为,半径

圆心到直线的距离,解得:

直线方程为,即

综上所述:过点且与圆相切的直线的方程为:

2)由(1)知,直线斜率存在,可设其方程为

设圆心到直线距离为

,解得:

直线的方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产的某种零件的尺寸大致服从正态分布,且规定尺寸为次品,其余的为正品.生产线上的打包机自动把每5件零件打包成1箱,然后进入销售环节,若每销售一件正品可获利50元,每销售一件次品亏损100元.现从生产线生产的零件中抽样20箱做质量分析,作出的频率分布直方图如下:

1)估计生产线生产的零件的次品率及零件的平均尺寸;

2)从生产线上随机取一箱零件,求这箱零件销售后的期望利润及不亏损的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数在点处的切线方程;

(2)对于任意的的图象恒在图象的上方,求实数a的取值菹围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的最小值;

(2)当时,求证方程在区间上有唯一实数根;

(3)当时,设函数两个不同的极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线l过点.

1)若直线l的纵截距和横截距相等,求直线l的方程;

2)若直线l与两坐标轴围成的三角形的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MM1分别是棱ADA1D1的中点.

(1)求证:四边形BB1M1M为平行四边形;

(2)求证:∠BMC=∠B1M1C1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰直角三角形中,分别是上的点,的中点,将沿折起,得到如图2所示的四棱锥,其中.

(1)证明:平面

(2)求二面角的平面角的余弦值;

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的偶函数,对任意都有,当,且时,,给出如下命题:

②直线是函数的图象的一条对称轴;

③函数上为增函数;

④函数上有四个零点.

其中所有正确命题的序号为( )

A. ①② B. ②④ C. ①②③ D. ①②④

查看答案和解析>>

同步练习册答案