精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

【答案】(1)见解析(2)

【解析】

(Ⅰ)取的中点,连结,得到故,进而得到,利用线面平行的判定定理,即可证得平面.

(Ⅱ)以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.

(Ⅰ)在棱上存在点,使得平面,点为棱的中点.

理由如下:取的中点,连结,由题意,

,故.所以,四边形为平行四边形.

所以,,又平面平面,所以,平面.

(Ⅱ)由题意知为正三角形,所以,亦即

,所以,且平面平面,平面平面

所以平面,故以为坐标原点建立如图空间直角坐标系,

,则由题意知

设平面的法向量为

则由,令,则

所以取,显然可取平面的法向量

由题意:,所以.

由于平面,所以在平面内的射影为

所以为直线与平面所成的角,

易知在中,,从而

所以直线与平面所成的角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数,则下列结论错误的是( )

A. 是偶函数 B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题甲:“一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角相等或互补.”命题乙:“底面为正三角形,侧面为等腰三角形的三棱锥是正三棱锥.”命题丙:“过圆锥的两条母线的截面,以轴截面的面积最大.”其中真命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左右焦点分别为为椭圆上位于轴同侧的两点,的周长为的最大值为.

(Ⅰ)求椭圆的方程;

(Ⅱ)若,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的右焦点,点分别是轴,轴上的动点,且满足.若点满足为坐标原点).

(Ⅰ)求点的轨迹的方程;

(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点,试判断以线段为直径的圆是否经过点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某镇有一块空地,其中.当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中MN都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场.为安全起见,需在的周围安装防护网.

1)当时,求防护网的总长度;

2)为节省资金投入,人工湖的面积要尽可能小,设,问:当多大时的面积最小?最小面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数xy满足,则z的取值范围是______.表示ab两数中的较大数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 命题,则命题

B. ”是“”的充要条件

C. 命题“若,则”的逆否命题是“若,则

D. 命题;命题:对,总有;则是真命题

查看答案和解析>>

同步练习册答案