精英家教网 > 高中数学 > 题目详情
已知点P是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上的点,椭圆短轴长为2,F1,F2是椭圆的两个焦点,|OP|=
10
2
PF1
PF2
=
1
2
(点O为坐标原点).
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使
OM
+
ON
OA
,λ∈(0,2)求△OMN面积的最大值.

精英家教网
(Ⅰ)设P(x0,y0),F1(-c,0),F2(c,0)由|OP|=
10
2
,得x02+y02=
5
2
,…(1分)
PF1
PF2
=
1
2
(-c-x0,-y0)?(c-x0,-y0)=
1
2
,即x02+y02-c2=
1
2
…(2分)
所以c=
2
,又因为短轴长为2,所以b=1,所以离心率e=
c
a
=
6
3
,…(4分)
椭圆C的方程为:
x2
3
+y2=1
;…(6分)
(Ⅱ)解法一:由
y=x
x2
3
+y2=1
A(
3
2
3
2
)
,设直线MN的方程为y=kx+m,
联立方程组
y=kx+m
x2
3
+y2=1
消去y得:(1+3k2)x2+6kmx+3m2-3=0…(7分)
设M(x1,y1),N(x2,y2),则x1+x2=-
6km
1+3k2
x1x2=
3m2-3
1+3k2
…(8分)
所以y1+y2=k(x1+x2)+2m=
2m
1+3k2


因为
OM
+
ON
OA
,λ∈(0,2),所以x1+x2=
3
2
λ
y1+y2=
3
2
λ

kMN=-
1
3
,m=
3
3
λ
,于是x1+x2=
3m
2
x1x2=
9m2-9
4
…(9分)
所以|MN|=
1+(-
1
3
)
2
|x1-x2|=
10
3
(x1+x2)2-4x1x2
=
10
?
4-3m2
2
…(10分)
又因为λ>0,原点O到直线MN的距离为d=
3
10
m
10
   所以S△OMN=
1
2
|MN|d=
10
?
4-3m2
4
?
3
10
m
10
S△OMN=
1
2
|MN|d=
10
?
4-3m2
4
?
3
10
m
10
=
3
?
(4-3m2)3m2
4
3
2

m=
6
3
,即λ=
2
时等号成立,S△OMN的最大值为
3
2
…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
36
+
y2
24
=1(x≠0,y≠0)
上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0
,则|OM|的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)已知点P是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上的点,椭圆短轴长为2,F1,F2是椭圆的两个焦点,|OP|=
10
2
PF1
PF2
=
1
2
(点O为坐标原点).
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使
OM
+
ON
OA
,λ∈(0,2)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2013年江西省鹰潭市高考数学一模试卷(文科)(解析版) 题型:解答题

已知点P是椭圆C:+=1(a>b>0)上的点,椭圆短轴长为2,F1,F2是椭圆的两个焦点,|OP|==(点O为坐标原点).
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使+,λ∈(0,2)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:黑龙江省模拟题 题型:单选题

已知点P是椭圆:(x≠0,y≠0)上的动点,是椭圆的两个焦点,O是坐标原点,若M是∠P的角平分线上一点,且·=0,则|OM|的取值范围是(  )
A.[0,3) 
B.(0,)  
C.[,3)  
D.[0,4]

查看答案和解析>>

同步练习册答案