【题目】已知函数,分别是定义在上的偶函数和奇函数,且.
(1)求函数,的解析式;
(2)若对任意,不等式恒成立,求实数的最大值;
(3)设,若函数与的图象有且只有一个公共点,求的取值范围.
【答案】(1),;(2)4;(3)或
【解析】
(1)用替换再利用奇偶性得到,与已知条件联立即可得到函数,的解析式;
(2)将代入,换元思想,分离参数,构造函数,求函数最小值,即可得实数的最大值;
(3)根据题意,换元后转化为方程有且只有一个正根,再对讨论即可得出的取值范围.
解:(1),用代替得,
则,
解方程得:,.
(2)对任意恒成立,
令,,因为令在单调递增,故
则对恒成立
当时, 故,即
(3)由题:方程有且只有一个根
即有且只有一个根,
令,因为在上单调递增,且
故方程(*式)有且只有一个正根
①当时,方程有唯一根,合题
②当时,方程变形为,解得两根为,
因为(*式)有且只有一个正根,故或,解得或
综上:的取值范围为或
科目:高中数学 来源: 题型:
【题目】为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量:
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25
乙:12,37,21,5,54,42,61,45,19,6,71,36,42,14
(1)请用茎叶图表示上面的数据.
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 ,函数 ,且图象上一个最高点为与最近的一个最低点的坐标为 .
(Ⅰ)求函数的解析式;
(Ⅱ)设为常数,判断方程在区间上的解的个数;
(Ⅲ)在锐角中,若,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,已知直线: (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的极坐标为,直线与曲线的交点为, ,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以坐标原点为极点,轴的正半轴为极轴建立的极坐标系中,曲线的参数方程(为参数),曲线的极坐标方程:.
(1)求曲线和曲线的直角坐标方程;
(2)设曲线交轴于点(不是原点),过点的直线交曲线于A,B两个不同的点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:,设点B,C是直线l:上的两点,它们的横坐标分别是t,,P点的纵坐标为a且点P在线段BC上,过P点作圆M的切线PA,切点为A
若,,求直线PA的方程;
经过A,P,M三点的圆的圆心是D,
将表示成a的函数,并写出定义域.
求线段DO长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com