【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).
(1)求;
(2)若,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,点在椭圆上,且点到点的最大距离为,点到点的最小距离为.
(1)求椭圆的标准方程;
(2)若直线交椭圆于、两点,坐标原点到直线的距离为,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.
(1)求抛物线的方程;
(2)直线与抛物线交于、两点,若,求点到直线的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,若满足,则称函数为“型函数”.
(1)判断函数和是否为“型函数”,并说明理由;
(2)设函数,记为函数的导函数.
①若函数的最小值为1,求的值;
②若函数为“型函数”,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于分的为合格品,否则为次品.现随机抽取两种产品各件进行检测,其结果如下:
测试指数分数 | |||||
甲产品 | |||||
乙产品 |
(1)根据以上数据,完成下边的列联表,并判断是否有的有把握认为两种产品的质量有明显差异?
甲产品 | 乙产品 | 合计 | |
合格品 | |||
次品 |
(2)已知生产件甲产品,若为合格品,则可盈利元,若为次品,则亏损元;生产件乙产品,若为合格品,则可盈利元,若为次品,则亏损元.记为生产件甲产品和件乙产品所得的总利润,求随机变量的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率)
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB =2BC,点Q为AE的中点.
(1)求证:AC//平面DQF;
(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线与椭圆有一个相同的焦点,过点且与轴不垂直的直线与抛物线交于,两点,关于轴的对称点为.
(1)求抛物线的方程;
(2)试问直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com