A. | 2ρ(sin θ+cos θ)=r | B. | 2ρ(sin θ+cos θ)=-r | ||
C. | $\sqrt{2}$ρ(sin θ+cos θ)=r | D. | $\sqrt{2}$ρ(sin θ+cos θ)=-r |
分析 分别出圆ρ=r的直角坐标方程和圆ρ=sin(θ+$\frac{π}{4}$)(r>0)直角坐标方程,从而求出圆ρ=r与圆ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直线的方程.
解答 解:圆ρ=r的直角坐标方程为:x2+y2=r2,
圆ρ=sin(θ+$\frac{π}{4}$)(r>0)直角坐标方程为${x}^{2}+{y}^{2}-\sqrt{2}rx-\sqrt{2}ry$=0,
∴圆ρ=r与圆ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直线的方程为$\sqrt{2}x+\sqrt{2}y$=r,
即圆ρ=r与圆ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直线的方程为$\sqrt{2}ρ$(sin θ+cos θ)=r.
故选:C.
点评 本题考查两圆的公共弦所在的直线方程的求法,是基础题,解题时要认真审题,注意直角坐标和极坐标互化公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{36}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=(-2x+3)ex | B. | f(x)=e-2x+3 | ||
C. | $f(x)={e^{-{x^2}+3x+1}}$ | D. | $f(x)=(-2x+3){e^{-{x^2}+3x+1}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com