精英家教网 > 高中数学 > 题目详情

【题目】设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→ 是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A∩B=

【答案】{0,1};{1}或
【解析】解:①根据题意,A={0,1,2},

通过对应关系f:x→ ,B={0,1, },

所以A∩B={0,1};

②根据题意,B={1,2}时,

过对应关系f:x→ ,得

A={1}或{4}或{1,4};

所以A∩B={1}或

所以答案是:{0,1},{1}或

【考点精析】关于本题考查的集合的交集运算,需要了解交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b、c分别是△ABC的三个内角A、B、C的对边.
(1)若△ABC面积SABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,D为边BC上的一点,BD=33,sinB= ,cos∠ADC= ,求AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣14y+45=0及点Q(﹣2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,则∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=
④若a>0,b>0,a+b=2,则a2+b2≥2;
正确的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家具每张所需工时和每张产值如表:

家具名称

书桌

书柜

电脑椅

产值(千元)

4

3

2

问每周应生产书桌、书柜、电脑椅各多少张,才能使产值最高?最高产值是多少?(以千元为单位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是(
A.点P到平面QEF的距离
B.直线PQ与平面PEF所成的角
C.三棱锥P﹣QEF的体积
D.△QEF的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定点M(3, )与抛物线y2=2x上的点P的距离为d1 , P到抛物线准线l的距离为d2 , 则d1+d2取最小值时,P点的坐标为(
A.(0,0)
B.(1,
C.(2,2)
D.( ,-

查看答案和解析>>

同步练习册答案