精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,分别是线段的中点,底面是正三角形,延长到点,使得.

1为线段上确定一点,当平面时,求的值;

2)当平面,且时,求二面角的余弦值.

【答案】12

【解析】

1)解三角形求得,根据线面平行的性质定理得到,根据平行线等分线段求得的值.

2)建立空间直角坐标系,根据平面和平面的法向量,求得二面角的余弦值.

1)在正中,为线段的中点,故

中,,故

中,,故,故

因为平面,过的平面平面

所以

因为是线段的中点,所以为线段的中点.

从而.

2)因为平面,所以两两垂直.为坐标原点,分别以所在直线为轴,

建立空间直角坐标系.

,所以.于是,.

令平面的一个法向量为

则由

,得.而平面的一个法向量为

所以

故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且 .

(1)若 分别为 的中点,求证: 平面

(2)若 与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为其左焦点,在椭圆.

1)求椭圆的方程;

2)若是椭圆上不同的两点,以为直径的圆过原点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现国民经济新三步走的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2015年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为70%,2015年开始全面实施精准扶贫政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加户数占2019年贫困总户数的比)及该项目的脱贫率见下表:

实施项目

种植业

养殖业

工厂就业

参加占户比

45

45

10

脱贫率

96

96

90

那么2019年的年脱贫率是实施精准扶贫政策前的年均脱贫率的( )倍.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为的面积为2.

(I)求椭圆C的方程;

(II)M是椭圆C上一点,且不与顶点重合,若直线与直线交于点P,直线与直线交于点Q.求证:BPQ为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果存在区间满足上的单调函数,且在区间上的值域也为,则称函数为区间上的“保值函数”,为“保值区间”.根据此定义给出下列命题:①函数上的“保值函数”;②若函数上的“保值函数”,则;③对于函数存在区间,且,使函数上的“保值函数”.其中所有真命题的序号为(

A.B.C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x1|+|2x+2|gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)对x1Rx2R,使得fx1)≥gx2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:ab0)过点E1),其左、右顶点分别为AB,左、右焦点为F1F2,其中F10).

1)求椭圆C的方程:

2)设Mx0y0)为椭圆C上异于AB两点的任意一点,MNAB于点N,直线lx0x+2y0y40,设过点Ax轴垂直的直线与直线l交于点P,证明:直线BP经过线段MN的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,四边形是边长为2的正方形,平面.

(1)设BDAC的交点为O,求证:平面

(2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案