精英家教网 > 高中数学 > 题目详情
3.数列{an}满足Sn=2n-an(n∈N*).
(1)计算a1、a2、a3,并猜想an的通项公式;
(2)用数学归纳法证明(1)中的猜想.

分析 (1)利用递推关系式,通过n=1,2,3求解a1、a2、a3,猜想an的通项公式;
(2)利用数学归纳法的证明步骤,证明猜想即可.

解答 解:(1)当n=1时,a1=S1=2-a1,∴a1=1;
当n=2时,a1+a2=S2=2×2-a2,∴a2=$\frac{3}{2}$;
当n=3时,a1+a2+a3=S3=2×3-a3,∴a3=$\frac{7}{4}$.
由此猜想an=$\frac{{2}^{n}-1}{{2}^{n-1}}$(n∈N*
(2)证明:①当n=1时,a1=1结论成立,
②假设n=k(k≥1,且k∈N*)时结论成立,
即ak=$\frac{{2}^{k}-1}{{2}^{k-1}}$,
当n=k+1时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1,∴2ak+1=2+ak
∴ak+1=$\frac{2+ak}{2}$=$\frac{{2}^{k+1}-1}{{2}^{k}}$,
∴当n=k+1时结论成立,于是对于一切的自然数n∈N*,an=$\frac{{2}^{n}-1}{{2}^{n-1}}$成立

点评 本题考查数列的应用,数学归纳法的证明,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,定点F(1,0),P是定直线l:x=-1上一动点,过点P作l的垂线与线段PF的垂直平分线相交于点Q,记Q点的轨迹为曲线T,过点E(2,0)作斜率分别为k1,k2的两条直线AB,CD交曲线T于点A,B,C,D,且M,N分别是AB,CD的中点.
(1)求曲线T的方程;
(2)若k1+k2=1,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC的三个内角A,B,C的对边分别是a,b,c,$\frac{cosA-2cosC}{cosB}=\frac{2c-a}{b}$.
(1)若C=A+$\frac{π}{3}$,求角A的大小;
(2)若cosB=$\frac{1}{4}$,△ABC的周长为5,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,(n≥2)
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求:前n项和公式Sn
(3)证明:当n≥2时,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,空间四边形OABC中,E,F分别为OA,BC的中点,设$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,试用a,b,c表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,已知行车道总宽度|AB|=6米,那么车辆通过隧道的限制高度是多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$g(x)=2\sqrt{3}sinx•cosx+2{cos^2}x+m$在区间$[0,\frac{π}{2}]$的最大值为6.
(1)求常数m的值;
(2)求函数g(x)在x∈R时的最小值并求出相应x的取值集合.
(3)求函数y=g(-x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设F1,F2分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点,M是椭圆C上一点,且直线MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为$\frac{3}{4}$,求C的离心率;
(2)若直线MN在y轴上的截距为2,且MN=5F1N,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=(x+b)lnx,g(x)=alnx+$\frac{1-a}{2}{x^2}$-x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)若对任意x≥1,都有g(x)>$\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

同步练习册答案