【题目】在平面直角坐标系中,已知椭圆: 的离心率,且椭圆上一点到点的距离最大值为4,过点的直线交椭圆于点.
(1)求椭圆的方程;
(2)设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,.
(I)若,求函数在点处的切线方程;
(II)若函数在上是增函数,求实数的取值范围;
(III)令,(是自然对数的底数),求当实数等于多少时,可以使函数取得最小值为3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人进行射击比赛,各射击局,每局射击次,射击命中目标得分,未命中目标得分,两人局的得分情况如下:
甲 | ||||
乙 |
(Ⅰ)若从甲的局比赛中,随机选取局,求这局的得分恰好相等的概率.
(Ⅱ)如果,从甲、乙两人的局比赛中随机各选取局,记这局的得分和为,求的分布列和数学期望.
(Ⅲ)在局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出的所有可能取值.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知为椭圆: 的右焦点, , , 为椭圆的下、上、右三个顶点, 与的面积之比为.
(1)求椭圆的标准方程;
(2)试探究在椭圆上是否存在不同于点, 的一点满足下列条件:点在轴上的投影为, 的中点为,直线交直线于点, 的中点为,且的面积为.若不存在,请说明理由;若存在,求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,是的中点,是等腰三角形,为的中点,为上一点.
(I)若平面,求;
(II)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com