精英家教网 > 高中数学 > 题目详情
已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m取值范围是(  )
分析:先求出函数f(x)的定义域,在定义域内,根据复合函数单调性的判断方法可求得f(x)的增区间,根据f(x)在(m,m+1)上递增,可知(m,m+1)为f(x)增区间的子集,可得不等式组.
解答:解:由-x2+8x-7>0,即x2-8x+7<0,得1<x<7,
∴函数f(x)的定义域为(1,7),
f(x)可看作由y=lgt,t=-x2+8x-7复合而成的,
t=-x2+8x-7在(1,4]上递增,在[4,7)上递减,而y=lgt在(0,+∞)上递增,
∴f(x)在(1,4]上递增,在[4,7)上递减,
又f(x)在(m,m+1)上是增函数,
∴有
m≥1
m+1≤4
,解得1≤m≤3,
故选C.
点评:本题考查复合函数的单调性,属中档题,若函数f(x)在区间(a,b)上递增,则(a,b)为函数f(x)增区间的子集.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=lg(1+x)+alg(1-x)是奇函数.
(1)求f(x)的定义域
(2)求a的值;
(3)当k>0时,解关于x的不等式f(x)≥lg
1+xk

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知f(x)=lg(x+1)
(1)若0<f(1-2x)-f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|lg(x-2)|,当a<b时,f(a)=f(b),则a+b的取值范围为
(6,+∞)
(6,+∞)

查看答案和解析>>

同步练习册答案