A. | [-$\frac{4}{3}$,$\frac{1}{6}$] | B. | (0,$\frac{1}{6}$] | C. | (0,$\frac{1}{6}$) | D. | (-$\frac{4}{3}$,$\frac{1}{6}$) |
分析 f(x)在(-1,1)上是增函数,则f′(x)=12ax3-4(3a+1)x+4≥0在(-1,1)上恒成立,从而3ax2+3ax-1≤0在(-1,1)上恒成立,可求a的取值范围.
解答 解:∵f(x)在(-1,1)上是增函数,
则f′(x)=12ax3-4(3a+1)x+4≥0在(-1,1)上恒成立,
而f′(x)=4(x-1)(3ax2+3ax-1),
∴3ax2+3ax-1≤0在(-1,1)上恒成立
令g(x)=3ax2+3ax-1
则 $\left\{\begin{array}{l}{a>0}\\{g(-1)≤0}\\{g(1)≤0}\end{array}\right.$或 $\left\{\begin{array}{l}{a<0}\\{g(-\frac{1}{2})≤0}\end{array}\right.$或a=0
∴$\left\{\begin{array}{l}{a>0}\\{-1≤0}\\{6a-1≤0}\end{array}\right.$或 $\left\{\begin{array}{l}{a<0}\\{-\frac{3a}{4}-1≤0}\end{array}\right.$或a=0
∴-$\frac{4}{3}$≤a≤$\frac{1}{6}$,
故选:A.
点评 本题以函数为载体,考查导数的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $4\sqrt{3\sqrt{2}}$ | B. | $5\sqrt{4\sqrt{3\sqrt{2}}}$ | C. | $5\sqrt{4}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6π | B. | $\sqrt{6}π$ | C. | 12π | D. | $2\sqrt{6}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1024 | B. | 1023 | C. | 2048 | D. | 2046 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com