精英家教网 > 高中数学 > 题目详情
设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<0恒成立,则称函数y=f(x)在区间D上为“凸函数”已知实数m是常数,f(x)=
x4
12
-
mx3
6
-
3x2
2

(1)若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围;
(2)若对满足|m|≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值.
分析:(1)由题意可得g(x)<0在[0,3]上恒成立?
g(0)<0
g(3)<0
,解得m即可;
(2)令p(m)=g(x)=-xm+x2-3<0对?m∈[-2,2]上恒成立?
p(-2)<0
p(2)<0
,即转化为看作关于m的一次函数,利用其单调性即可解得x即可.
解答:解:f(x)=
1
3
x3-
1
2
mx2-3x
,g(x)=x2-mx-3.
(1)由题意可得g(x)<0在[0,3]上恒成立,
g(0)<0
g(3)<0
,解得m>2.
∴m的取值范围是(2,+∞);
(2)令p(m)=g(x)=-xm+x2-3<0对?m∈[-2,2]上恒成立,
p(-2)<0
p(2)<0
,解得-1<x<1.
∴(b-a)max=1-(-1)=2.
点评:正确把问题等价转化和熟练掌握导数的运算法则、一次函数和二次函数等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数 fk(x)=
f(x),f(x)≤K
K,f(x)>K
,取函数f(x)=2-x-e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则(  )
A、K的最大值为2
B、K的最小值为2
C、K的最大值为1
D、K的最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数:fK(x)=
f(x)
1
f(x)
f(x)≤K
 
f(x)>K
,取函数f(x)=(
1
2
)|x|
,当K=
1
2
时,函数fK(x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(a,b)上的导数为f′(x),f′(x)在(a,b)上的导数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.若函数f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
为区间(-1,3)上的“凸函数”,则m=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)上满足f(-x)=f(4+x),f(4-x)=f(10+x),且在闭区间[0,7]上,f(x)=0仅有两个根x=1和x=3,则方程f(x)=0在闭区间[-2011,2011]上根的个数有
805
805

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函数f(x)=2+x+e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则(  )

查看答案和解析>>

同步练习册答案