精英家教网 > 高中数学 > 题目详情
1.如图所示,A,B,C是一条公路上的三点,BC=2AB=2km,从这三点分别观测一塔P,从A测得塔在北偏东60°,从B测得塔在正东,从C测得塔在南偏东60°,求该塔到这条公路的距离.

分析 过C,B,P分别作CMl,BNl,PQl,垂足分别为M,N,Q,设BN=x,可求PA,PC,由余弦定理可得AC2=PA2+PC2-2PA•PC•cos60°,解得x,过P作PD⊥AC,垂足为D,可求sin∠BAN=x,cos∠BAN=$\sqrt{1-{x}^{2}}$,sin∠CAP=$\frac{1}{2}$$\sqrt{1-{x}^{2}}$+$\frac{\sqrt{3}}{2}$x,由PD=APsin∠CAP即可求值得解.

解答 解:如图所示,过C,B,P分别作CMl,BNl,PQl,垂足分别为M,N,Q,设BN=x,即PQ=x,PA=2x,
∵BC=2AB=2,
CM=3BN=3x,PC=2(MC-BN)=4x,
在△PAC中,由余弦定理可得:AC2=PA2+PC2-2PA•PC•cos60°,
即:9=4x2+16x2-2×2x×4x×$\frac{1}{2}$,
解得:x2=$\frac{3}{4}$,
过P作PD⊥AC,垂足为D,则线段PD的长为塔到直路的距离,
∵sin∠BAN=x,cos∠BAN=$\sqrt{1-{x}^{2}}$,
∴sin∠CAP=sin(150°-∠BAN)=$\frac{1}{2}$$\sqrt{1-{x}^{2}}$+$\frac{\sqrt{3}}{2}$x,
∴PD=APsin∠CAP=2x×($\frac{1}{2}$$\sqrt{1-{x}^{2}}$+$\frac{\sqrt{3}}{2}$x)=x$\sqrt{1-{x}^{2}}$+$\sqrt{3}$x2=$\sqrt{3}$.

点评 本题主要考查了余弦定理在解三角形中的应用,考查了同角三角函数关系式的应用,考查了数形结合思想和计算能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设f(x)=ax2+4x(a∈R)的值域是(-∞,4].
(1)求a的值;
(2)若方程|f(x)|=m有四个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\sqrt{2}$sin(x-$\frac{π}{4}$)+sin2x,则f(x)的值域为[-1-$\sqrt{2}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=-2cos2x-2sinx+3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆x2+y2=8上恰有三个点到过点P(4,0)的直线l的距离都等于$\sqrt{2}$,则直线l的斜率为±$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\sqrt{x}$+1,g(x)=alnx,若在x=$\frac{1}{4}$处函数f(x)与g(x)的图象的切线平行,则实数a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=3$\sqrt{x-5}$+4$\sqrt{6-x}$,则函数y的值域为[3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{b}{a}$+$\frac{a}{b}$=4cosC.
(Ⅰ)求$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$的值;
(Ⅱ)若tanA=2tanB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
(1)求线性回归方程;
(2)预测当广告费支出7(百万元)时的销售额.
附:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

同步练习册答案