精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PAB是正三角形,四边形ABCD是矩形,且平面PAB平面ABCD,PA=2,PC=4.

(Ⅰ)若点E是PC的中点,求证:PA平面BDE;

(Ⅱ)若点F在线段PA上,且FA=λPA,当三棱锥B﹣AFD的体积为时,求实数λ的值.

【答案】(Ⅰ)详见解析(Ⅱ)

【解析】

试题分析:)连接AC,设ACBD=Q,又点EPC的中点,则在PAC中,中位线EQPA,又EQ平面BDEPA平面BDE.所以PA平面BDE)由平面PAB平面ABCD,则PO平面ABCD;作FMPO于AB上一点M,则FM平面ABCD,进一步利用求得最后利用平行线分线段成比例求出λ的值

试题解析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在PAC中,中位线EQPA,

又EQ平面BDE,PA平面BDE.所以PA平面BDE

)解:依据题意可得:PA=AB=PB=2,取AB中点O,

所以POAB,且 又平面PAB平面ABCD,则PO平面ABCD;

作FMPO于AB上一点M,则FM平面ABCD,因为四边形ABCD是矩形,

所以BC平面PAB,则PBC为直角三角形,

所以,则直角三角形ABD的面积为

由FMPO得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C +=1ab0)的离心率为,椭圆C的长轴长为4

1)求椭圆C的方程;

2)已知直线ly=kx+与椭圆C交于AB两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+2y10l22x+ny+50l3mx+3y+10,若l1l2l1l3,则m+n的值为(

A.10B.2C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差

10

11

13

12

8

发芽数

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,平面的中点.

(1)证明://平面

(2)设,三棱锥的体积,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=2m+(4-m2)i,当实数m取何值时,复数z对应的点:

(1)位于虚轴上?

(2)位于一、三象限

(3)位于以原点为圆心,以4为半径的圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式的解集为.

1)若是从四个数中任取的一个数, 是从三个数中任取的一个数,求不为空集的概率;

2)若是从区间上任取的一个数, 是从区间上任取的一个数,求不为空集的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,

(1)在上确定一点,使得平面,并求的值;

(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案