精英家教网 > 高中数学 > 题目详情

【题目】如图,在中, ,点的中点,点为线段垂直平分线上的一点,且,四边形为矩形,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,点到直线的距离为__________

【答案】

【解析】设内切圆分别与AC,BC切于点F,GBE的中点为H所以.

∴点C在以A,B为焦点的双曲线的右支上。

AB所在的直线为x轴,以ED所在的直线为y轴建立平面直角坐标系,如图所示

B(2,0)D(0,3)易得故点C在双曲线的右支上。

,所以当三点共线时,且C在线段BD上时, 取得最小值

将直线的方程联立消去y整理得解得结合图形可得取得最小值时点C的横坐标为,即点CAH的距离为

答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间与极值;

(2)当时,令,若上有两个零点,求实数的取值范围;

(3)当时,函数的图像上所有点都在不等式组所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个几何体的三视图如下图,大致画出它的直观图,并求出它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+ax(a∈R).
(1)当a=3时,求函数f(x)在[,2]上的最大值和最小值;
(2)当函数f(x)在(,2)单调时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小型风力发电项目投资较少,开发前景广阔.受风力自然资源影响,项目投资存在一定风险.根据测算,IEC(国际电工委员会)风能风区的分类标准如下:

风能分类

一类风区

二类风区

平均风速m/s

8.5---10

6.5---8.5

某公司计划用不超过100万元的资金投资于A、B两个小型风能发电项目.调研结果是:未来一年内,位于一类风区的A项目获利%的可能性为0.6,亏损%的可能性为0.4;

B项目位于二类风区,获利35%的可能性为0.6,亏损10%的可能性是0.2,不赔不赚的可能性是0.2.

假设投资A项目的资金为)万元,投资B项目资金为)万元,且公司要求对A项目的投资不得低于B项目.

(Ⅰ)记投资A,B项目的利润分别为,试写出随机变量的分布列和期望 ;

(Ⅱ)根据以上的条件和市场调研,试估计一年后两个项目的平均利润之和 的最大值,并据此给出公司分配投资金额建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线方程:
(1)求经过直线l1:x+3y﹣3=0,l2:x﹣y+1=0的交点,且平行于直线2x+y﹣3=0的直线l方程;
(2)求在两坐标轴上截距相等,且与点A(3,1)的距离为的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,点M,N分别在线段AB1、BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,⑤MN与 A1C1成30°.其中有可能成立的结论的个数为(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线x2 =1的左、右焦点分别为F1、F2 , 若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是

查看答案和解析>>

同步练习册答案