精英家教网 > 高中数学 > 题目详情

【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级名学生中进行了抽样调查发现喜欢甜品的占.这名学生中南方学生共南方学生中有人不喜欢甜品.

(1)完成下列列联表

喜欢甜品

不喜欢甜品

合计

南方学生

北方学生

合计

(2)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

(3)已知在被调查的南方学生中有名数学系的学生其中名不喜欢甜品名物理系的学生其中名不喜欢甜品.现从这两个系的学生中,各随机抽取记抽出的人中不喜欢甜品的人数为的分布列和数学期望.

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1)列联表见解析.

(2) 有的把认为“南方学生和北方学生在选甜品的饮食习惯方面有差异”.

(3)分布列见解析;.

【解析】分析:(1)根据数据填写表格,(2)根据卡方公式得,再与参考数据比较得可靠率,(3)先列随机变量可能取法,再利用组合数求对应概率,最后根据数学期望公式求期望.

详解:(1)

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

(2)由题意,

∴有的把握认为“南方学生和北方学生在选甜品的饮食习惯方面有差异”.

(3)的所有可能取值为0,1,2,3,

的分布列为

0

1

2

3

所以的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组:并整理得到如下频率分布直方图:

(1)求的值;

(2)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;

(3)估计春节期间参与收发网络红包的手机用户的平均年龄。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,并整理得到如下频率分布直方图:

(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;

(Ⅱ)估计该区居民年龄的中位数(精确到);

(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆Γ: =1(a>b>0)的左右焦点分别为F1 , F2 , 焦距为2c,若直线y= 与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 , 则该椭圆的离心率等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角的外接圆的半径为1,,则的面积的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,中奖可以获得2分;方案乙的中奖率为 ,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知,函数

(I)当为何值时, 取得最大值?证明你的结论;

(II) 上是单调函数,求的取值范围;

(III)设,当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,∠ABC=BCD=90°,EPB的中点。

1)证明:CE∥面PAD.

2)若直线CE与底面ABCD所成的角为45°,求四棱锥P-ABCD的体积。

查看答案和解析>>

同步练习册答案