精英家教网 > 高中数学 > 题目详情
已知椭圆M、抛物线N的焦点均在x轴上的,且M的中心和M的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求M,N的标准方程;
(Ⅱ)已知定点A(1,
1
2
),过原点O作直线l交椭圆M于B,C两点,求△ABC面积的最大值和此时直线l的方程.
(Ⅰ)设抛物线M:y2=2px(p≠0),则有
y2
x
=2p(x≠0)
据此验证4个点知(3,-2
3
),(4,-4)在抛物线上,
∴N的标准方程为y2=4x.…(2分)
设M:
x2
a2
+
y2
b2
=1(a>b>0),把点(-2,0),(
2
2
2

代入得:
4
a2
=1
2
a2
+
1
2b2
=1
,解得a2=4,b2=1
∴M的标准方程为
x2
4
+y2=1;(6分)
(Ⅱ)当直线BC垂直于x轴时,BC=2,则S△ABC=1
当直线BC不垂直于x轴时,设该直线方程为y=kx,
代入椭圆方程,消y得x2=
4
4k2+1

不妨设B(
2
4k2+1
2k
4k2+1
),C(-
2
4k2+1
,-
2k
4k2+1
),
∴|BC|=
(xB-xA)2+(yB-yA)2
=
4
1+k2
4k2+1
(9分)
∵点A到直线BC的距离d=
|k-
1
2
|
1+k2

∴S△ABC=
1
2
|BC|×d=
|2k-1|
4k2+1
=
4k2-4k+1
4k2+1
=
1-
4k
4k2+1
,(12分)
令t=
4k
4k2+1
,则4tk2-4k+t=0,
由△k=16-16t2≥0得-1≤t≤1
∴当
4k
4k2+1
=-1时,面积取得最大值
2
,此时k=-
1
2

综上所述,当直线的方程为y=-
1
2
x时,△ABC的面积取得最大值
2
(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知平面内一动点P到点F(2,0)的距离比点P到y轴的距离大2,
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F且斜率为2
2
的直线交轨迹C于A(x1,y1),B(x2,y2)(x1<x2)两点,P(x3,y3)(x3≥0)为轨迹C上一点,若
OP
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

线段PQ是椭圆
x2
4
+
y2
3
=1
过M(1,0)的一动弦,且直线PQ与直线x=4交于点S,则
|SM|
|SP|
+
|SM|
|SQ|
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与双曲线x2-4y2=4交于A、B两点,若线段AB的中点坐标为(8,1),则直线的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直线l:y=
3
(x-4)
关于直线l1:y=
b
a
x
对称的直线l′与x轴平行.
(1)求双曲线的离心率;
(2)若点M(4,0)到双曲线上的点P的最小距离等于1,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆
x2
a2
+
y2
b
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,圆O的半径为定长r,A是圆O外一定点,P是圆上任意一点.线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹是(  )
A.椭圆B.圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F1(2,0),离心率为e.
(1)若e=
2
2
,求椭圆的方程;
(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.
①证明点A在定圆上;
②设直线AB的斜率为k,若k
3
,求e的取值范围.

查看答案和解析>>

同步练习册答案