£¨2011•ÉعØÄ£Ä⣩ÒÑÖªÊýÁÐ{an} (n¡ÊN*)Âú×㣺a1=1£¬an+1-sin2¦È•an=cos2¦È•cos2n¦È£¬ÆäÖЦȡÊ(0£¬
¦Ð
2
)
£®
£¨1£©µ±¦È=
¦Ð
4
ʱ£¬Çó{an}µÄͨÏʽ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÈôÊýÁÐ{bn}ÖУ¬bn=sin
¦Ðan
2
+cos
¦Ðan-1
4
(n¡ÊN*£¬n¡Ý2)
£¬ÇÒb1=1£®ÇóÖ¤£º¶ÔÓÚ?n¡ÊN*£¬1¡Übn¡Ü
2
ºã³ÉÁ¢£»
£¨3£©¶ÔÓڦȡÊ(0£¬
¦Ð
2
)
£¬Éè{an}µÄÇ°nÏîºÍΪSn£¬ÊԱȽÏSn+2Óë
4
sin22¦È
µÄ´óС£®
·ÖÎö£º£¨1£©ÏÈÈ·¶¨ÊýÁÐ{an}ÊÇÊ×ÏîΪa1=1£¬¹«±ÈΪ
1
2
µÄµÈ±ÈÊýÁУ¬ÔÙÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉ£¨1£©µÃ£¬an=
1
2n-1
£¬´Ó¶ø¿ÉµÃbn=
2
sin(
¦Ð
2n
+
¦Ð
4
)
È·¶¨½ÇµÄ·¶Î§£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©½â·¨Ò»£ºÏÈÈ·¶¨{an}µÄͨÏʽ£¬ÔÙ·Ö×éÇóºÍ£¬×÷²î±È½Ï¿ÉµÃ½áÂÛ£»
½â·¨¶þ£ºÏÈÈ·¶¨{an}µÄͨÏʽ£¬ÔÙ·Ö×éÇóºÍ£¬ÀûÓ÷ÅËõ·¨¿ÉµÃ½áÂÛ£»
½â´ð£º£¨1£©½â£ºµ±¦È=
¦Ð
4
ʱ£¬sin2¦È=
1
2
£¬cos2¦È=0
£¬¡àan+1-
1
2
an=0
£¬¼´
an+1
an
=
1
2
£®¡­2
·Ö
¹ÊÊýÁÐ{an}ÊÇÊ×ÏîΪa1=1£¬¹«±ÈΪ
1
2
µÄµÈ±ÈÊýÁУ®
¹ÊÊýÁÐ{an}µÄͨÏʽΪ¡¡an=
1
2n-1
£®¡­4
·Ö
£¨2£©Ö¤Ã÷£ºÓÉ£¨1£©µÃ£¬an=
1
2n-1
£¬
¡àµ±n¡ÊN*£¬n¡Ý2ʱ£¬ÓÐbn=sin
¦Ðan
2
+cos
¦Ðan-1
4
=sin(
¦Ð
2
1
2n-1
)+cos(
¦Ð
4
1
2n-2
)
=sin
¦Ð
2n
+cos
¦Ð
2n
=
2
sin(
¦Ð
2n
+
¦Ð
4
)£®¡­6
·Ö
b1=1Ò²Âú×ãÉÏʽ£¬¹Êµ±n¡ÊN*ʱ£¬bn=
2
sin(
¦Ð
2n
+
¦Ð
4
)
£®
¡ßn¡ÊN*£¬
¡à0£¼
¦Ð
2n
¡Ü
¦Ð
2
£¬
¦Ð
4
£¼
¦Ð
2n
+
¦Ð
4
¡Ü
3¦Ð
4
£¬
¡à1¡Ü
2
sin(
¦Ð
2n
+
¦Ð
4
)¡Ü
2
£¬¼´1¡Übn¡Ü
2
. ¡­8
·Ö
£¨3£©½â£º½â·¨Ò»£ºÓÉan+1-sin2¦È•an=cos2¦È•cos2n¦ÈµÃ£ºan+1-sin2¦È•an=(cos2¦È-sin2¦È)•cos2n¦È£¬
¡àan+1-cos2n+2¦È=(an-cos2n¦È)sin2¦È£¬¼´
an+1-cos2n+2¦È
an-cos2n¦È
=sin2¦È
£¬
¡à{an-cos2n¦È}ÊÇÊ×ÏîΪa1-cos2¦È=1-cos2¦È=sin2¦È£¬¹«±ÈΪsin2¦ÈµÄµÈ±ÈÊýÁУ¬
¹Êan-cos2n¦È=sin2n¦È£¬ ¡à an=cos2n¦È+sin2n¦È£®¡­9·Ö
¡àSn=a1+a2+¡­+an=£¨cos2¦È+cos4¦È+¡­+cos2n¦È£©+£¨sin2¦È+sin4¦È+¡­+sin2n¦È£©
=
cos4¦È+sin4¦È-cos2n+4¦È-sin2n+4¦È
sin2¦Ècos2¦È
£®¡­11
·Ö
Òò´Ë£¬Sn+2-
4
sin22¦È
=
cos4¦È+sin4¦È-cos2n+4¦È-sin2n+4¦È
sin2¦Ècos2¦È
+2-
4
sin22¦È

=
cos4¦È+sin4¦È-cos2n+4¦È-sin2n+4¦È+2sin2¦Ècos2¦È-1
sin2¦Ècos2¦È

=
(cos2¦È+sin2¦È)2-(cos2n+4¦È+sin2n+4¦È)-1
sin2¦Ècos2¦È

=-
(cosn+2¦È)2+(sinn+2¦È)2
sin2¦Ècos2¦È
£¼0
£¬
¡àSn+2£¼
4
sin22¦È
£®¡­£¨14·Ö£©
½â·¨¶þ£ºÍ¬½â·¨Ò»µÃ an=cos2n¦È+sin2n¦È£®¡­9·Ö
¡ß¦È¡Ê(0£¬
¦Ð
2
)£¬0£¼cos2n¦È£¼1£¬0£¼sin2n¦È£¼1£»¡­11
·Ö
¡àSn=a1+a2+¡­+an=£¨cos2¦È+cos4¦È+¡­+cos2n¦È£©+£¨sin2¦È+sin4¦È+¡­+sin2n¦È£©=
cos2¦È(1-cos2n¦È)
1-cos2¦È
+
sin2¦È(1-sin2n¦È)
1-sin2¦È
£¼
cos2¦È
1-cos2¦È
+
sin2¦È
1-sin2¦È
=
cos4¦È+sin4¦È
sin2¦Ècos2¦È
=
(cos2¦È+sin2¦È)2-2sin2¦Ècos2¦È
sin2¦Ècos2¦È
=
1
sin2¦Ècos2¦È
-2=
4
sin22¦È
-2

¡àSn+2£¼
4
sin22¦È
£®¡­£¨14·Ö£©
£¨ÆäËû½â·¨×ÃÇé¸ø·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏ¿¼²é²»µÈʽµÄÖ¤Ã÷£¬¿¼²é´óС±È½Ï£¬È·¶¨ÊýÁÐͨÏÕÆÎÕÇóºÍ·½·¨Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉعØÄ£Ä⣩º¯Êýy=
x-1
µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉعØÄ£Ä⣩¹«°²²¿·¢²¼¾Æºó¼ÝÊ»´¦·£µÄй涨£¨Ò»´ÎÐÔ¿Û·£12·Ö£©ÒÑÓÚ2011Äê4ÔÂ1ÈÕÆðÕýʽʩÐУ®¾ÆºóÎ¥·¨¼ÝÊ»»ú¶¯³µµÄÐÐΪ·Ö³ÉÁ½¸öµµ´Î£º¡°¾Æºó¼Ý³µ¡±ºÍ¡°×í¾Æ¼Ý³µ¡±£¬Æä¼ì²â±ê×¼ÊǼÝÊ»ÈËԱѪҺÖеľƾ«º¬Á¿Q£¨¼ò³ÆѪ¾Æº¬Á¿£¬µ¥Î»ÊǺÁ¿Ë/100ºÁÉý£©£¬µ±20¡ÜQ£¼80ʱ£¬Îª¾Æºó¼Ý³µ£»µ±Q¡Ý80ʱ£¬Îª×í¾Æ¼Ý³µ£®Ä³Êй«°²¾Ö½»Í¨¹ÜÀí²¿ÃÅÔÚij·¶ÎµÄÒ»´ÎÀ¹²éÐж¯ÖУ¬ÒÀ·¨¼ì²éÁË200Á¾»ú¶¯³µ¼ÝʻԱµÄѪ¾Æº¬Á¿£¨ÈçÏÂ±í£©£®
Ѫ¾Æº¬Á¿ £¨0£¬20£© [20£¬40£© [40£¬60£© [60£¬80£© [80£¬100£© [100£¬120]
ÈËÊý 194 1 2 1 1 1
ÒÀ¾ÝÉÏÊö²ÄÁϻشðÏÂÁÐÎÊÌ⣺
£¨¢ñ£©·Ö±ðд³ö¾ÆºóÎ¥·¨¼Ý³µ·¢ÉúµÄƵÂʺ;ƺóÎ¥·¨¼Ý³µÖÐ×í¾Æ¼Ý³µµÄƵÂÊ£»
£¨¢ò£©´Ó¾ÆºóÎ¥·¨¼Ý³µµÄ˾»úÖУ¬³éÈ¡2ÈË£¬ÇëÒ»Ò»ÁоٳöËùÓеijéÈ¡½á¹û£¬²¢ÇóÈ¡µ½µÄ2ÈËÖк¬ÓÐ×í¾Æ¼Ý³µµÄ¸ÅÂÊ£® £¨¾Æºó¼Ý³µµÄÈËÓôóд×ÖĸÈçA£¬B£¬C£¬D±íʾ£¬×í¾Æ¼Ý³µµÄÈËÓÃСд×ÖĸÈça£¬b£¬c£¬d±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉعØÄ£Ä⣩ij³ö°æÉçгö°æÒ»±¾¸ß¿¼¸´Ï°ÓÃÊ飬¸ÃÊéµÄ³É±¾Îª5Ôª/±¾£¬¾­Ïú¹ý³ÌÖÐÿ±¾ÊéÐ踶¸ø´úÀíÉÌmÔª£¨1¡Üm¡Ü3£©µÄÀÍÎñ·Ñ£¬¾­³ö°æÉçÑо¿¾ö¶¨£¬ÐÂÊéͶ·ÅÊг¡ºó¶¨¼ÛΪxÔª/±¾£¨9¡Üx¡Ü11£©£¬Ô¤¼ÆÒ»ÄêµÄÏúÊÛÁ¿Îª£¨20-x£©2Íò±¾£®
£¨1£©Çó¸Ã³ö°æÉçÒ»ÄêµÄÀûÈóL£¨ÍòÔª£©Óëÿ±¾ÊéµÄ¶¨¼ÛxµÄº¯Êý¹Øϵʽ£»
£¨2£©µ±Ã¿±¾ÊéµÄ¶¨¼ÛΪ¶àÉÙԪʱ£¬¸Ã³ö°æÉçÒ»ÄêµÄÀûÈóL×î´ó£¬²¢Çó³öLµÄ×î´óÖµR£¨m£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉعØÄ£Ä⣩ΪÁ˽âijУ½ÌʦʹÓöàýÌå½øÐнÌѧµÄÇé¿ö£¬²ÉÓüòµ¥Ëæ»ú³éÑùµÄ·½·¨£¬´Ó¸ÃУ200ÃûÊڿνÌʦÖгéÈ¡20Ãû½Ìʦ£¬µ÷²éÁËËûÃÇÉÏѧÆÚʹÓöàýÌå½øÐнÌѧµÄ´ÎÊý£¬½á¹ûÓþ¥Ò¶Í¼±íʾÈçÏ£º
¾Ý´Ë¿É¹À¼Æ¸ÃУÉÏѧÆÚ200Ãû½ÌʦÖУ¬Ê¹ÓöàýÌå½øÐнÌѧ´ÎÊýÔÚ[15£¬30]ÄÚµÄÈËÊýΪ
100
100
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉعØÄ£Ä⣩ÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÒ»¸ö½¹µãFÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖغϣ¬ÇÒ½ØÅ×ÎïÏßµÄ×¼ÏßËùµÃÏÒ³¤Îª
2
£¬Çãб½ÇΪ45¡ãµÄÖ±Ïßl¹ýµãF£®
£¨¢ñ£©Çó¸ÃÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²µÄÁíÒ»¸ö½¹µãΪF1£¬ÎÊÅ×ÎïÏßy2=4xÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃMÓëF1¹ØÓÚÖ±Ïßl¶Ô³Æ£¬Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸