已知为公差不为零的等差数列,首项,的部分项、、 、恰为等比数列,且,,.
(1)求数列的通项公式(用表示);
(2)设数列的前项和为, 求证:(是正整数
(1) (2)见解析
解析试题分析:
(1)由题得a1,a5,a17是成等比数列的,所以,则可以利用公差d和首项a来表示,进而得到d的值,得到an的通项公式.
(2)利用第一问可以求的等比数列、、 、中的前三项,得到该等比数列的通项公式,进而得到的通项公式,再利用分组求和法可得到Sn的表达式,可以发现为不可求和数列,所以需要把放缩成为可求和数列,考虑利用的二项式定理放缩证明,即,故求和即可证明原不等式.
试题解析:
(1)设数列的公差为,
由已知得,,成等比数列,
∴ ,且 2分
得或
∵ 已知为公差不为零
∴, 3分
∴. 4分
(2)由(1)知 ∴ 5分
而等比数列的公比.
∴ 6分
因此,
∵
∴ 7分
∴ 9分
∵当时,
∴(或用数学归纳法证明此不等式)
∴ 11分
∴当时,,不等式成立;
当时,
综上得不等式成立. 14分
法二∵当时,
∴
科目:高中数学 来源: 题型:解答题
已知数列{an},其前n项和为Sn.
(1)若对任意的n∈N,a2n-1,a2n+1,a2n组成公差为4的等差数列,且a1=1,=2013,求n的值;
(2)若数列是公比为q(q≠-1)的等比数列,a为常数,求证:数列{an}为等比数列的充要条件为q=1+.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的等比数列{an}的公比为q,且0<q<.
(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n-2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com