精英家教网 > 高中数学 > 题目详情

已知为公差不为零的等差数列,首项的部分项、 、恰为等比数列,且.
(1)求数列的通项公式(用表示);
(2)设数列的前项和为, 求证:是正整数

(1)   (2)见解析

解析试题分析:
(1)由题得a1,a5,a17是成等比数列的,所以,则可以利用公差d和首项a来表示,进而得到d的值,得到an的通项公式.
(2)利用第一问可以求的等比数列、 、中的前三项,得到该等比数列的通项公式,进而得到的通项公式,再利用分组求和法可得到Sn的表达式,可以发现为不可求和数列,所以需要把放缩成为可求和数列,考虑利用的二项式定理放缩证明,即,故求和即可证明原不等式.
试题解析:
(1)设数列的公差为
由已知得成等比数列,
∴ ,且           2分
  
∵ 已知为公差不为零
,                               3分
.             4分
(2)由(1)知      ∴         5分
而等比数列的公比.
∴                                6分
因此

                       7分
                   9分
∵当时,

(或用数学归纳法证明此不等式)
               11分
∴当时,,不等式成立;
时,
 
综上得不等式成立.           14分
法二∵当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差,且分别是等比数列.
(1)求数列的通项公式;
(2)设数列对任意正整数均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是公差不为0的等差数列,,且成等比数列.
(1)求数列{an}的通项公式;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,为常数,,且成公比不等于1的等比数列
(1)求的值;
(2)设,求数列的前项和 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an},其前n项和为Sn.
(1)若对任意的n∈N,a2n-1,a2n+1,a2n组成公差为4的等差数列,且a1=1,=2013,求n的值;
(2)若数列是公比为q(q≠-1)的等比数列,a为常数,求证:数列{an}为等比数列的充要条件为q=1+.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的等比数列{an}的公比为q,且0<q<.
(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=5,S3=9.
(1)求首项a1和公差d的值;
(2)若Sn=100,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n-2.

查看答案和解析>>

同步练习册答案