精英家教网 > 高中数学 > 题目详情
1.已知抛物线C:y2=4x,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且PQ⊥PR.
(Ⅰ)求过点P,且与C恰有一个公共点的直线l的方程;
(Ⅱ)求证:QP过定点,并求出定点坐标.

分析 (Ⅰ)直线y=2符合题意,当y≠2时,设l的方程m(y-2)=x-1,代入抛物线方程,由△=0,即可求得m的值,直线l的方程;
(Ⅱ)由$\overrightarrow{PQ}$=($\frac{{a}^{2}}{4}$-1,a-2),$\overrightarrow{PR}$=($\frac{{b}^{2}}{4}$-1,b-2),则$\overrightarrow{PQ}$•$\overrightarrow{PR}$=0,则ab+2a+2b+20=0,而过QR的直线的斜率为:$\frac{a-b}{\frac{{a}^{2}}{4}-\frac{{b}^{2}}{4}}$=$\frac{4}{a+b}$,整理得4x-20-(a+b)(y+2)=0.可得直线恒过定点(5,-2).

解答 解:(Ⅰ)由题意可知P(1,2),显然直线y=2符合题意;
当y≠2时,设l的方程m(y-2)=x-1,
$\left\{\begin{array}{l}{m(y-2)=x-1}\\{{y}^{2}=4x}\end{array}\right.$,整理得:y2-4my+8m-4=0,
令△=(4m)2-4(8m-4)=0,解得:m=1,
∴y=x+1,
∴直线l的方程y=2或y=x+1;
(Ⅱ)证明:设Q($\frac{{a}^{2}}{4}$,a),R($\frac{{b}^{2}}{4}$,b),而P(1,2),
∴$\overrightarrow{PQ}$=($\frac{{a}^{2}}{4}$-1,a-2),$\overrightarrow{PR}$=($\frac{{b}^{2}}{4}$-1,b-2),
由于PQ⊥PR,得向量$\overrightarrow{PQ}$•$\overrightarrow{PR}$=0,
即为($\frac{{a}^{2}}{4}$-1)($\frac{{b}^{2}}{4}$-1)+(a-2)(b-2)=0,
整理得ab+2a+2b+20=0.
而过QR的直线的斜率为:$\frac{a-b}{\frac{{a}^{2}}{4}-\frac{{b}^{2}}{4}}$=$\frac{4}{a+b}$.
∴过QR的直线方程为y-b=$\frac{4}{a+b}$(x-$\frac{{b}^{2}}{4}$),
整理得:4x+ab-(a+b)y=0,
即4x-(a+b)y-2a-2b-20=0.
化为4x-20-(a+b)(y+2)=0.可得直线恒过定点(5,-2).
∴直线QR必过定点(5,-2).

点评 本题考查了抛物线的简单几何性质,考查了直线系方程的运用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知集合A={(x,y)|x2=y+1,|x|<2,x∈Z},试用列举法表示集合A={(-1,0),(0,-1),(1,0)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,a2=2,S5=15,则数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2017项和为(  )
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2017}{2018}$D.$\frac{2018}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-lnx,g(x)=$\frac{lnx}{x}$.
(1)求f(x)的最小值;
(2)求证:f(x)>g(x);
(3)若f(x)+ax+b≥0,求$\frac{b+1}{a+1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log3(x+1)的解集是(  )
A.{x|-1≤x≤2}B.{x|-1<x≤2}C.{x|-1<x≤0}D.{x|-1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(理科)已知函数y=sin2x+2sinxcosx+3cos2x(x∈R)
(1)求它的振幅、周期和初相;
(2)求函数的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于函数f(x)=x2-2x+1的零点,下列说法正确的是(  )
A.因为f(0)?f(2)>0,所以f(x)在(0,2)内没有零点
B.因为1是f(x)的一个零点,所以f(0)?f(2)<0
C.由于f(x)在区间(-∞,0)上单调递减,所以f(x)在(-∞,0)内有唯一的一个零点
D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角θ的终边过点P(-12,5),则cosθ=(  )
A.$\frac{5}{13}$B.$-\frac{12}{13}$C.$\frac{12}{13}$D.$-\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案