精英家教网 > 高中数学 > 题目详情

(09年长沙一中一模文)(13分)  设数列的前项和为,且,其中为常数且

(1)证明:数列是等比数列;

(2)设数列的公比,数列满足

   求数列的通项公式;

(3)设,数列的前项和为,求证:当时,

解析:(1)由

    相减得:,∴

∴数列是等比数列.       ……………………4 分

  (2),∴

是首项为,公差为1的等差数列;∴

.    ……………………8分

(3)时,,∴

,                 ①

                  ②

②得

,             …………………………11分

又因为,单调递增,

故当时, .     …………………………13分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年长沙一中一模文)(13分)   设椭圆的离心率为,点,原点到直线的距离为

(1)求椭圆的方程;

(2)设点,点在椭圆上(与均不重合),点在直线上,若直线的方程为,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年长沙一中一模文)(12分)  现有甲、乙两个盒子,甲盒子里盛有4个白球和4个红球,乙盒子里盛有3个白球和若干个红球,若从乙盒子里任取两个球取得同色球的概率为

(1)求乙盒子中红球的个数;

(2)从甲、乙盒子里各任取两个球进行交换,若交换后乙盒子里的白球数和红球数相等,就说这次交换是成功的,试求进行一次这样的交换成功的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年长沙一中一模理)(13分)已知函数f (x) = lnxg (x) =(a>0),设F(x) = f (x) + g (x).

(1)求函数F(x)的单调区间;

(2)若点为函数的图象上任意一点,当时,点P处的切线的斜率k恒成立,求实数a的最小值;

(3)是否存在实数m,使得函数y = g() + m 1的图象与函数y = f (1 + x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年长沙一中一模理)(12分)在如图所示的多面体中,底面△ABC是边长为2的正三角形,DAEC均垂直于平面ABC,且DA = 2,EC = 1.

(Ⅰ)求点A到平面BDE的距离;

(Ⅱ)求二面角BEDA的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年长沙一中一模理)(12分)某单位小会议室里的3只白炽灯泡已坏,电工李师傅前往会议室更换。若所带灯泡包装盒中共有6只灯泡(外观形状完全一样),其中4只好的,2只坏的。李师傅每次随机从包装盒中任取一只(每只被取的概率相同),若取出的灯泡是好的,则将其更换小会议室已坏的灯泡,若取出的灯泡是坏的,则不再放回包装盒,也不能用它更换小会议室已坏的灯泡.

(Ⅰ)求李师傅第二次所取的灯泡是好的的概率;

(Ⅱ)设李师傅全部更换了小会议室的3只已坏灯泡时,从包装盒中所取灯泡次数为,求的分布列和期望.

查看答案和解析>>

同步练习册答案