精英家教网 > 高中数学 > 题目详情
10.设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A∪B)中元素个数为(  )
A.4B.5C.6D.7

分析 根据已知中集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},结合集合并集,补集的定义,可得答案.

解答 解:∵A={2,5},B={1,2,4,5},
∴A∪B={1,2,4,5},
又∵集合U={n|n∈N*且n≤9}={1,2,3,4,5,6,7,8,9},
∴∁U(A∪B)={3,6,7,8,9},
故∁U(A∪B)共有5个元素,
故选:B.

点评 本题考查的知识点是集合的交集,并集,补集的混合运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\sqrt{({{a^2}-1}){x^2}-({a-1})x+1}$的定义域是全体实数,那么实数a的取值范围是(-∞,-$\frac{5}{3}$]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知无穷数列{cn}满足cn+1=|1-|1-2cn||.
(Ⅰ)若c1=$\frac{1}{7}$,写出数列{cn}的前4项;
(Ⅱ)对于任意0<c1≤1,是否存在实数M,使数列{cn}中的所有项均不大于M?若存在,求M的最小值;若不存在,请说明理由;
(Ⅲ)当c1为有理数,且c1≥0时,若数列{cn}自某项后是周期数列,写出c1的最大值.(直接写出结果,无需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“-2<m<-$\frac{1}{3}$”是“方程$\frac{{x}^{2}}{m+3}$+$\frac{{y}^{2}}{2m+1}$表示双曲线,且方程$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{2m-1}$表示交点在y轴上的椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一次函数y=-$\frac{m}{n}$x+$\frac{1}{n}$的图象同时经过第一、二、四象限的必要不充分条件是(  )
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=log2x+x-4的零点在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,已知A,B是单位圆上两点且|AB|=$\sqrt{3}$,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α,β是两个平面,m,n是两条直线,则下列四个结论中,正确的有②③(填写所有正确结论的编号)
①若m∥α,n∥α,则m∥n;
②若m⊥α,n∥α,则m⊥n;
③若a∥β,m?α,则m∥β;
④若m⊥n.m⊥α,n∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在直角坐标系xOy中,已知曲线${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t为参数),曲线${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数,a>1),若C1恰好经过C2的焦点,则a的值为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案