本题考查数列的定义的应用,错位相减法,数列与函数相结合,恒成立问题的综合应用,考查分析问题解决问题,转化思想的应用,知识面广,运算量大.
(1)利用f (x)=m
x(m为常数,m>0且m≠1).代入a
n,求出a
n的表达式,利用等差数列的定义,证明数列{a
n}是等差数列;
(2)通过b
n=a
n f (a
n),且数列{b
n}的前n项和为S
n,当m=2时,求出S
n的表达式,利用错位相减法求出S
n;
解:(1)由题意f(a
n)=
,即
.
∴a
n=n+1,(2分) ∴a
n+1-a
n=1,
∴数列{a
n}是以2为首项,1为公差的等差数列.
(2)由题意
=(n+1)·m
n+1,
当m=2时,b
n=(n+1)·2
n+1∴S
n=2·2
2+3·2
3+4·2
4+…+(n+1)·2
n+1 ①
①式两端同乘以2,得
2S
n=2·2
3+3·2
4+4·2
5+…+n·2
n+1+(n+1)·2
n+2 ②
②-①并整理,得
S
n=-2·2
2-2
3-2
4-2
5-…-2
n+1+(n+1)·2
n+2=-2
2-(2
2+2
3+2
4+…+2
n+1)+(n+1)·2
n+2=-2
2-
+(n+1)·2
n+2=-2
2+2
2(1-2
n)+(n+1)·2
n+2=2
n+2·n.