精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的左顶点,且点在椭圆上, 分别是椭圆的左、右焦点。过点作斜率为的直线交椭圆于另一点直线交椭圆于点.

1求椭圆的标准方程;

2为等腰三角形,求点的坐标;

3,求的值.

【答案】123

【解析】试题分析:

(1)由题意得到关于的方程组,求解方程组可得椭圆的标准方程:

(2)由题意可得点轴下方据此分类讨论有: ,联立直线的方程与椭圆方程可得

(3)设直线的方程,联立直线方程与椭圆方程,可得 利用几何关系计算可得 ,利用点在椭圆上得到关于实数k的方程,解方程有: .

试题解析:

1)由题意得,解得

∴椭圆的标准方程:

2为等腰三角形,且∴点轴下方

,则

,则

,则

∴直线的方程,由

3)设直线的方程

,则∴不垂直;

∴直线的方程,直线的方程:

解得

又点在椭圆上得,即,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点Ax轴正半轴上的任一点,且,点B在射线ON上运动.

(1)若点,当为直角三角形时,求的值;

(2)若点,求点A关于射线的对称点P的坐标;

(3)若C为线段AB的中点,若Q为点C关于射线ON的对称点,求点的轨迹方程,并指出xy的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCDAF∥DEDE=3AFBE与平面ABCD所成角为60°

)求证:AC⊥平面BDE

)求二面角F﹣BE﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.

Ⅰ)求椭圆的方程;

Ⅱ)设过点的直线与椭圆相交于两点,关于原点的对称点为,若点总在以线段为直径的圆内,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左焦点为F(10),经过点F的直线l0与椭圆交于AB两点.当直线l0x轴时,|AB|.

(1)求椭圆C的方程;

(2)作直线lx轴,分别过ABAA1l,垂足为A1BB1l,垂足为B1,且△A1FB1是直角三角形.问:是否存在直线l使得∠A1FO2B1FO?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E ,其焦点为F1F2,离心率为,直线lx2y20x轴,y轴分别交于点AB

(1)若点A是椭圆E的一个顶点,求椭圆的方程;

(2)若线段AB上存在点P满足|PF1||PF2|2a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,C1的参数方程为 (t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,C2的极坐标方程ρ2-2ρcos θ-3=0.

(Ⅰ)说明C2是哪种曲线,并将C2的方程化为普通方程;

()C1C2有两个公共点AB定点P的极坐标求线段AB的长及定点PAB两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张A4纸的长宽之比为 分别为, 的中点.现分别将,沿, 折起,且, 在平面同侧,下列命题正确的是__________(写出所有正确命题的序号)

, , , 四点共面;

当平面平面 平面

, 重合于点时,平面平面

, 重合于点时,设平面平面 ,则平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E 经过点,离心率为.

(1)求椭圆E的标准方程;

(2)A1A2分别是椭圆E的左、右顶点,过点A2作直线lx轴垂直,点P是椭圆E上的任意一点(不同于椭圆E的四个顶点),连接PA1交直线l于点B,点Q为线段A2B的中点,求证:直线PQ与椭圆E只有一个公共点.

查看答案和解析>>

同步练习册答案