精英家教网 > 高中数学 > 题目详情
9.设fn(x)是等比数列1,x,x2,…,xn的各项和,则  f2016(2)等于(  )
A.22016-2B.22017-1C.22016-1D.22017-2

分析 由已知得f2016(2)=1+2+22+…+22016,由此利用等比数列的前n项和公式能求出结果.

解答 解:∵fn(x)是等比数列1,x,x2,…,xn的各项和,
∴f2016(2)=1+2+22+…+22016
=$\frac{1-{2}^{2017}}{1-2}$=22017-1.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=3si{n^2}(x+\frac{π}{6})+\frac{{\sqrt{3}}}{2}sinxcosx-\frac{1}{2}{cos^2}x$
(1)求函数f(x)在$[0,\frac{π}{2}]$上的最大值与最小值;
(2)已知$f(2{x_0})=\frac{49}{20}$,x0∈($\frac{π}{6}$,$\frac{7π}{24}$),求cos4x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是(  )
A.若m∥α,m∥β,则α∥βB.若m⊥α,α⊥β,则 m∥β
C.若m?α,m⊥β,则 α⊥βD.若m?α,α⊥β,则 m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U={0,1,2,3},集合A={0,2},集合B={2,3},则(∁UA)∪B=(  )
A.{3}B.{2,3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某园林公司准备绿化一块半径为200米,圆心角为$\frac{π}{4}$的扇形空地(如图的扇形OPQ区域),扇形的内接矩形ABCD为一水池,其余的地方种花,若∠COP=α,矩形ABCD的面积为S(单位:平方米).
(1)试将S表示为关于α的函数,求出该函数的表达式;
(2)角α取何值时,水池的面积 S最大,并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,已知复数z=$\frac{|1-i|+2i}{1-i}$,则z在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将四位同学等可能的分到甲、乙、丙三个班级,则甲班级至少有一位同学的概率是$\frac{65}{81}$,用随机变量ξ表示分到丙班级的人数,则Eξ=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1、F2为椭圆的两个焦点,M为椭圆上一点,MF1⊥MF2,且|MF2|=|MO|(其中点O为椭圆的中心),则该椭圆的离心率为(  )
A.$\sqrt{3}$-1B.2-$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的通项公式是an=n2-10n+22,其前n项和是Sn,对任意的m,n∈N*(m<n),Sn-Sm的最小值是(  )
A.-7B.7C.-12D.-2

查看答案和解析>>

同步练习册答案