【题目】函数.
(I)函数在点处的切线与直线垂直,求a的值;
(II)讨论函数的单调性;
(III)不等式在区间上恒成立,求实数a的取值范围.
【答案】(I)(II)当时,函数f(x)在区间上是单调递增;
当时,函数f(x)在区间上单调递增;在区间上单调递减;在区间上单调递增(III).
【解析】试题分析:(I)求导,利用导数的几何意义与两直线垂直的判定进行求解;(II)求导,讨论二次方程的根的个数、根的大小关系,进而判定其单调性;(III)分离常数,转化为求函数的求值问题.
试题解析:(I)函数定义域为
由题意 ,解得.
(II)
(i)当 时,,函数f(x) 在 上单调递增;
(ii)当 时,函数f(x)在区间上单调递增;在区间上单调递减;在区间上单调递增
(iii)当 时,,函数f(x) 在 上单调递增;
综上所述:当时,函数f(x)在区间上是单调递增;
当时,函数f(x)在区间上单调递增;在区间上单调递减;在区间上单调递增
(III)等价于
令
在区间(0,1)上,函数g(x)为减函数;
在区间上,函数g(x)为增函数;
所以实数的范围是.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x (m∈Z)为偶函数,且在(0,+∞)上为增函数.
(1)求m的值,并确定f(x)的解析式;
(2)若函数g(x)=loga(f(x)﹣ax+2)在区间(1,+∞)上恒为正值,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计算下列各式的值,写出必要的计算过程.
(1)0.064 ﹣(﹣ )0+16 +0.25
(2)(log43+log83)(log32+log92)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,边长为an的一组正三角形AnBn﹣1Bn的底边Bn﹣1Bn依次排列在x轴上(B0与坐标原点重合).设{an}是首项为a,公差为2的等差数列,若所有正三角形顶点An在第一象限,且均落在抛物线y2=2px(p>0)上,则a的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线C1:y2=2px与椭圆C2: 在第一象限的交点为B,O为坐标原点,A为椭圆的右顶点,△OAB的面积为 .
(1)求抛物线C1的方程;
(2)过A点作直线L交C1于C、D两点,求线段CD长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明家订了一份报纸,暑假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.
(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);
(2)小明的父亲上班离家的时间在上午至之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C 的参数方程为 (为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)设,若l 1 、l2与曲线C 相交于异于原点的两点 A、B ,求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com