精英家教网 > 高中数学 > 题目详情
已知正四棱锥(底面是正方形,顶点在底面的射影是底面的中心)的底面边长为a,侧棱长为
2
a
(1)求它的外接球的体积
(2)求他的内切球的表面积.
考点:球的体积和表面积,球内接多面体
专题:计算题,空间位置关系与距离
分析:(1)四棱锥为正四棱锥,根据该四棱锥的侧棱长为
2
a,底面是边长为a的正方形,确定四棱锥的高,进而可求球的半径,可得外接球的体积;
(2)利用等体积求出内切球的半径,即可求内切球的表面积.
解答: 解:(1)由题意,四棱锥为正四棱锥,
∵该四棱锥的侧棱长为
2
a,底面是边长为a的正方形,
∴四棱锥的高为
6
2
a,
设外接球的半径为R,则有R2=(
2
2
a)2+(
6
2
a-R)2
∴R=
6
3
a,
∴外接球的体积为
4
3
π×(
6
3
a)3
=
8
6
27
πa3

(2)设内切球的半径为r,则
1
3
×a2×
6
2
a=
1
3
×(a2+4×
1
2
×a×
2a2-
a2
4
)×r

∴r=
42
-
6
12
a
∴表面积为4πr2=
4-
7
3
πa2
点评:本题考查正四棱锥、考查球的半径,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=200米,BC=100米.现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,设求△DEF边长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图所示的程序框图,输入x=6,则输出的y值为(  )
A、2
B、0
C、-1
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3lnx+1,g(x)=
1
2
ax2+2x+b   
(1)f(x)与g(x)在交点P(1,1)处有相同的切线,求a,b值;
(2)若h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*
(Ⅰ)求an和bn的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x2+3x-1的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),且函数f(x)在区间(2,+∞)上单调递增.如果x1<2<x2,且x1+x2<4,则f(x1)+f(x2)的值(  )
A、可正可负B、恒大于0
C、可能为0D、恒小于0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列满足a1+a2+a3=6,an+1=-
1
an+1
,则a16+a17+a18=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的偶函数f(x),其图象关于点(1,0)对称,并且x∈[2,4]时,f(x)=(3-x)3
(1)证明:f(x)+f(2-x)=0;
(2)证明:f(x)-f(x+4)=0;
(3)求f(x)在[-2,2]上的解析式,并写出f(x)在R上的单调递增区间.

查看答案和解析>>

同步练习册答案