精英家教网 > 高中数学 > 题目详情
8.函数的定义域是$y=(x-1)^{0}+\sqrt{lo{g}_{\frac{2}{3}}(3x-2)}$(  )
A.[$\frac{2}{3},1$]B.($\frac{2}{3},1$]C.[$\frac{2}{3},1$)D.($\frac{2}{3},1$)

分析 由0指数幂的底数不等于0,根式内部的代数式大于等于0联立不等式组得答案.

解答 解:要使原函数有意义,则$\left\{\begin{array}{l}{x-1≠0}\\{lo{g}_{\frac{2}{3}}(3x-2)≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠1}\\{0<3x-2≤1}\end{array}\right.$,解得$\frac{2}{3}<x<1$.
∴函数$y=(x-1)^{0}+\sqrt{lo{g}_{\frac{2}{3}}(3x-2)}$的定义域是$(\frac{2}{3},1)$.
故选:D.

点评 本题考查函数的定义域及其求法,考查对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知f(x)=ex(x2-(2a+4)x+6a+4),讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足$\frac{cosA}{cosB}=-\frac{a}{b+2c}$.
(1)求角A的大小;
(2)求sinBsinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列{an}的前n项和Sn,若Sn-Sn-1=2n-1(n≥2),且S2=3,则a1的值为(  )
A.0B.1C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}的前n项和${S_n}={2^n}+3$,则其通项公式an=$\left\{\begin{array}{l}{5,}&{n=1}\\{{2}^{n-1},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设A={x|x2-5x+4≤0},B={x|x2-2ax+a+2<0}
(1)用区间表示A;    
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=$\left\{{\begin{array}{l}{{x^2}-4x+2,x≥0}\\{x+5,x<0}\end{array}}\right.$,则f(-1)+f(1)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个几何体的三视图如图所示,则该几何体的体积是$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且EF⊥A1D,EF⊥AC.求证:EF∥BD1

查看答案和解析>>

同步练习册答案