精英家教网 > 高中数学 > 题目详情

=(x1,y1),=(x2,y2),若||=2,||=3,·=-6,则

[  ]
A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源:辽宁省抚顺县高中2009-2010学年高二上学期期末考试数学文科试题 题型:013

给出下列三个命题:

(1)若a≥b>-1,则

(2)若正整数m和n满足m≤n,则

(3)设P(x1,y1)为圆O1:x2+y2=9上一点,圆O2以Q(a,b)为圆心且半径为1,当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.

其中假命题的个数是

[  ]
A.

0

B.

1

C.

2

D.

3

查看答案和解析>>

科目:高中数学 来源: 题型:

P1(x1y1)是直线lf(xy)=0上一点,P2(x2y2)是不在直线l上的点,则方程f(xy)+f(x1y1)+f(x2y2)=0所表示的直线与l的关系是(  )

A.平行         B.重合

C.相交         D.位置关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

A(x1y1),B(x2y2)是椭圆=1(a>b>0)上的两点,已知向量

m·n=0且椭圆的离心率e,短轴长为2,O为坐标原点.

(1)求椭圆的方程;

(2)若直线AB的斜率存在且直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值;

(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.

(1)求椭圆的标准方程;           (2)求直线l的方程.

【解析】(1)中利用点F1到直线x=-的距离为可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。

解:(1)∵F1到直线x=-的距离为,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分

(2)设A(x1,y1)、B(x2,y2).由第(1)问知

,

……6分

∵A、B在椭圆+y2=1上,

……10分

∴l的斜率为.

∴l的方程为y=(x-),即x-y-=0.

 

查看答案和解析>>

同步练习册答案