科目:高中数学 来源:辽宁省抚顺县高中2009-2010学年高二上学期期末考试数学文科试题 题型:013
给出下列三个命题:
(1)若a≥b>-1,则;
(2)若正整数m和n满足m≤n,则;
(3)设P(x1,y1)为圆O1:x2+y2=9上一点,圆O2以Q(a,b)为圆心且半径为1,当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.
其中假命题的个数是
0
1
2
3
查看答案和解析>>
科目:高中数学 来源: 题型:
设P1(x1,y1)是直线l:f(x,y)=0上一点,P2(x2,y2)是不在直线l上的点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0所表示的直线与l的关系是( )
A.平行 B.重合
C.相交 D.位置关系不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
设A(x1,y1),B(x2,y2)是椭圆=1(a>b>0)上的两点,已知向量
若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)若直线AB的斜率存在且直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值;
(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题
已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-的距离为可知-+=.得到a2=4而c=,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-的距离为,∴-+=.
∴a2=4而c=,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知
,
∴……6分
∵A、B在椭圆+y2=1上,
∴……10分
∴l的斜率为=.
∴l的方程为y=(x-),即x-y-=0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com