精英家教网 > 高中数学 > 题目详情

【题目】(2017·黄冈质检)设等比数列{an}的各项均为正数,公比为q,前n项和为Sn.若对任意的n∈N*,有S2n<3Sn,则q的取值范围是(  )

A. (0,1] B. (0,2)

C. [1,2) D. (0, )

【答案】A

【解析】q≠1时,S2n3Snqn2.q1,则nlogq2对任意的nN*恒成立,显然不成立.若0q1,则nlogq2对任意的nN*恒成立,logq2nminlogq21,即0q2,又0q10q1.q1时,对任意的nN*,有S2n3Sn成立.综上可得,0q≤1.故选A.

点睛:数列中恒成立问题,与函数恒成立问题一样可转化为最值问题,即恒成立 恒成立 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年,世界乒乓球锦标赛在德国的杜赛尔多夫举行.整个比赛精彩纷呈,参赛选手展现出很高的竞技水平,为观众奉献了多场精彩对决.图1(扇形图)和表1是其中一场关键比赛的部分数据统计.两位选手在此次比赛中击球所使用的各项技术的比例统计如图1.在乒乓球比赛中,接发球技术是指回接对方发球时使用的各种方法.选手乙在比赛中的接发球技术统计如表1,其中的前4项技术统称反手技术,后3项技术统称为正手技术.

图1

选手乙的接发球技术统计表

技术

反手拧球

反手搓球

反手拉球

反手拨球

正手搓球

正手拉球

正手挑球

使用次数

20

2

2

4

12

4

1

得分率

55%

50%

0%

75%

41.7%

75%

100%

表1

(Ⅰ)观察图1,在两位选手共同使用的8项技术中,差异最为显著的是哪两项技术?

(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?

(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求曲线在点处的切线方程;

)当时,求证:函数有且仅有一个零点;

)当时,写出函数的零点的个数.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间

(2)当时,求函数上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求的单调区间;

(Ⅱ)若对任意的 都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.

(1)求曲线E的方程;

(2)已知m≠0,设直线xmy﹣1=0交曲线EAC两点,直线mx+ym=0交曲线EBD两点,若CD的斜率为﹣1时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,其中

(I)当时,求曲线在点处的切线方程;

(Ⅱ)证明: 在区间上恰有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上的两个动点 的横坐标线段的中点坐标为直线与线段的垂直平分线相交于点.

1)求点的坐标;

(2)求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2)在图2中:

(1)求证:平面 平面

(2)在线段上是否存点,使得二面角为大小为说明理由

查看答案和解析>>

同步练习册答案