精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分14分)

ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.

(1)求角A的大小;

(2)如图,在ABC的外角ACD内取一点P使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设PCA=α,求PM+PN的最大值及此时α的取值.

【答案】(1)(2)α时,PMPN取得最大值2

【解析】

试题分析:(1)解三角形,就是利用正余弦定理将边角统一,本题求角,应利用正弦定理将边化为角:sinAcosA=sinBcosB,再根据二倍角公式及诱导公式求角:sin2A=sin2B A=B或A+B因为C,所以A=BA=(2)求PM+PN的最大值,首先建立函数关系式,取自变量为角:PM+PN=2sinα+2sin (α)=3sinα+cosα=2sin(α+).再根据基本三角函数求其最值:因为α(0,),所以α+(),从而有sin(α)∈(,1],因此α,即α时,PMPN取得最大值2

试题解析:1)由acosA=bcosB及正弦定理可得sinAcosA=sinBcosB

sin2A=sin2B又A∈(0,π),B∈(0,π)

所以有A=B或A+B 2

C,得A+BA+B矛盾,所以A=B

因此A= 4

2)由题设,得

在RtPMC中,PM=PC·sinPCM=2sinα

在RtPNC中,PNPC·sinPCN= PC·sin(πPCB)

2sin[π(α)]=2sin (α),α(0,). 6

所以,PM+PN=2sinα+2sin (α)=3sinα+cosα=2sin(α+). 10

因为α(0,),所以α+(),从而有sin(α)∈(,1],

2sin(α)∈(2].

于是,当α,即α时,PMPN取得最大值2 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ax2+x,a∈R.
(1)若f(1)=0,求函数f(x)的最大值;
(2)令g(x)=f(x)﹣(ax﹣1),求函数g(x)的单调区间;
(3)若a=﹣2,正实数x1 , x2满足f(x1)+f(x2)+x1x2=0,证明x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017重庆二诊】已知函数

(1)分别求函数在区间上的极值;

(2)求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分12分某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上件产品作为样本称出它们的重量单位:克,重量的分组区间为 ,由此得到样本的频率分布直方图,如图所示.

1根据频率分布直方图,求重量超过克的产品数量;

2在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列;

3从该流水线上任取件产品,求恰有件产品的重量超过克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且
(1)求实数c的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三内角A,B,C所对的边分别是a,b,c,△ABC的面积S= 且sinA=
(1)求sinB;
(2)若边c=5,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y﹣4≤0,x≥0,y≥0}表示的平面区域分别为Ω1 , Ω2 , 若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,

(1)求m,n的取值.
(2)比较甲、乙两组数据的稳定性,并说明理由.
注:方差公式s2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,角∠AOB= ,若点A的坐标为( ),记∠COA=α.

(1)求 的值;
(2)求点B的坐标.

查看答案和解析>>

同步练习册答案