精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥,平面,为线段上一点不在端点.

(1)为中点时,,求证:

(2)中点时,是否存在,使得直线与平面所成角的正弦值为,若存在求出M的坐标,若不存在,说明理由.

【答案】(1)证明见解析(2)存在,

【解析】

1)法一:建立空间直角坐标系,找坐标,利用直线的方向向量与平面的法向量垂直,证明即可.法二:取BP的中点E,连接,则,根据线面平行的判定定理证明即可.

2)假设存在点M,根据,求点M的坐标,求平面的法向量为,根据,求解,即可.

(1)方法一:证明:因为平面平面.

所以.

,所以两两垂直.

分别以所在直线为轴、轴、轴建立空间直角坐标系.

.

显然平面的法向量为,则

不在平面内,所以平面.

方法二:取的中点,连接

的中点,可知

在平面四边形中,

,所以,即

由已知得

所以,四边形是平行四边形,所以

因为平面平面

所以平面

(2)假设存在点M使得与平面所成角的正弦值为

,所以

中点,则,即

设平面的法向量为

,不妨设,则

设线面角为,则

解得1(舍去)

时,直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4— 4:坐标系与参数方程

设极坐标系与直角坐标系有相同的长度单位,原点为极点,轴正半轴为极轴,曲线的参数方程为是参数),直线的极坐标方程为

(Ⅰ)求曲线的普通方程和直线的参数方程;

(Ⅱ)设点,若直线与曲线相交于两点,且,求的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个村庄ABC构成一个三角形,且AB=5千米,BC=12千米,AC=13千米.为了方便市民生活,现在ABC内任取一点M建一大型生活超市,则MABC的距离都不小于2千米的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列,等差数列满足,且的等比中项.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:),数列满足:),数列的前项和为

1)求数列的通项公式;

2)求证:数列是等比数列;

3)求证:数列是递增数列;若当且仅当时,取得最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设,且,记;

(1)设,其中,试求的单调区间;

(2)试判断弦的斜率的大小关系,并证明;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出四个命题:①若x23x+20,则x1x2;②若xy0,则x2+y20;③已知xyN,若x+y是奇数,则xy中一个是奇数,一个是偶数;④若x1x2是方程x22x+20的两根,则x1x2可以是一椭圆与一双曲线的离心率,那么(   )

A.③的否命题为假B.①的逆否命题为假

C.②的逆命题为真D.④的逆否命题为假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为梯形,平面ABCD

BE与平面EAC所成角的正弦值;

线段BE上是否存在点M,使平面平面DFM?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构对A市居民手机内安装的“APP”(英文Application的缩写,一般指手机软件)的个数和用途进行调研,在使用智能手机的居民中随机抽取了100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图:

(Ⅰ)从A市随机抽取一名使用智能手机的居民,试估计该居民手机内安装APP的个数不低于30的概率;

(Ⅱ)从A市随机抽取3名使用智能手机的居民进一步做调研,用X表示这3人中手机内安装APP的个数在[20,40)的人数.

①求随机变量X的分布列及数学期望;

②用Y1表示这3人中安装APP个数低于20的人数,用Y2表示这3人中手机内安装APP的个数不低于40的人数.试比较EY1EY2的大小.(只需写出结论)

查看答案和解析>>

同步练习册答案