精英家教网 > 高中数学 > 题目详情
(2013•合肥二模)已知f(x)是偶函数,当.x∈[0,
π
2
]时,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),则 a,b,c 的大小关系为(  )
分析:由题意可得 f(-x)=f(x),函数f(x)在[0,
π
2
]上是增函数.再由a=f(cos1),b=f(cos2)=f(cos(π-2),
c=f(cos3)=f(cos(π-3),而且 cos(π-3)>cos1>cos(π-2),从而得到c>a>b,从而得到结论.
解答:解:由于已知f(x)是偶函数,∴f(-x)=f(x),再由f(x)=xsinx,可得函数f(x)在[0,
π
2
]上是增函数.
再由a=f(cos1),b=f(cos2)=f(-cos(π-2))=f(cos(π-2),c=f(cos3)=f(-cos(π-3))=f(cos(π-3),
而且 cos(π-3)>cos1>cos(π-2),故有c>a>b,
故选B.
点评:本题主要考查函数的奇偶性、诱导公式、余弦函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•合肥二模)已知i是虚数单位,则复数
-2+i
1+i
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)点(x,y)满足
x+y-1≥0
x-y+1≥0
x≤a
,若目标函数z=x-2y的最大值为1,则实数a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)定义域为R的奇函数f(x )的图象关于直线.x=1对称,当x∈[0,1]时,f(x)=x,方程 f(x)=log2013x实数根的个数为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)在锐角△ABC 中,角 A,B,C 所对边分别为 a,b,c,且 bsinAcosB=(2c-b)sinBcosA.
(I)求角A;
(II)已知向量
m
=(sinB,cosB),
n
=(cos2C,sin2C),求|
m
+
n
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)(c>0),作倾斜角为
π
6
的直线FE交该双曲线右支于点P,若
OE
=
1
2
OF
+
OP
),且
OE
EF
=0则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案