【题目】如图,边长为2的正方形ABCD所在平面与三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求点A到平面BDE的距离.
【答案】
(1)证明:∵正方形ABCD中,AB∥CD,
AB平面CDE,CD平面CDE,
∴AB∥平面CDE
(2)证明:∵AE⊥平面CDE,CD平面CDE,DE平面CDE,
∴AE⊥CD,DE⊥AE,
在正方形ABCD中,CD⊥AD,
∵AD∩AE=A,∴CD⊥平面ADE.
∵DE平面ADE,∴CD⊥DE,
∵AB∥CD,∴DE⊥AB,
∵AB∩AE=E,∴DE⊥平面ABE
(3)解:∵AB⊥AD,AB⊥DE,AD∩DE=D,
∴AB⊥平面ADE,
∴三棱锥B﹣ADE的体积VB﹣ADE= = = ,
= = ,
设点A到平面BDE的距离为d,
∵VA﹣BDE=VB﹣ADE,∴ = ,解得d= ,
∴点A到平面BDE的距离为 .
【解析】(1)推导出AB∥CD,由此能证明AB∥平面CDE.(2)推导出AE⊥CD,DE⊥AE,从而CD⊥DE,再由DE⊥AB,能证明DE⊥平面ABE.(3)由AB⊥平面ADE,能求出三棱锥B﹣ADE的体积.再由VA﹣BDE=VB﹣ADE,能求出点A到平面BDE的距离.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对直线与平面垂直的判定的理解,了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)═log2( +a).
(1)若f(1)<2,求实数a的取值范围;
(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).
(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);
(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数 的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是( )
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C: + =1(a>b>0)的右焦点为F,右顶点、上顶点分别为点A、B,且|AB|= |BF|.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若斜率为2的直线l过点(0,2),且l交椭圆C于P、Q两点,OP⊥OQ.求直线l的方程及椭圆C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com