精英家教网 > 高中数学 > 题目详情
如图,已知PA垂直于正方形ABCD所在的平面,E、F分别为AB、PD的中点,过AE、AF的平面交PC于点H,二面角P-CD-B为45°,PA=a.
(Ⅰ)求证:AF∥EH;
(Ⅱ)求证:平面PCE⊥平面PCD; 
(Ⅲ)求多面体ECDAHF的体积.

【答案】分析:(Ⅰ)利用线面平行的判定,证明EA∥平面PCD,再证明四边形EAFH是平行四边形,即可证明AF∥EH;
(Ⅱ)证明AF⊥平面PCD,可得EH⊥平面PCD,利用面面垂直的判定,可以证明平面PCE⊥平面PCD; 
(Ⅲ)利用V多面体ECDAHF=VP-AECD-VP-EAFH,可求多面体ECDAHF的体积.
解答:(Ⅰ)证明:∵EA∥CD,CD?平面PCD,EA?平面PCD,
∴EA∥平面PCD.
又平面EAFH∩平面PCD=HF,且EA?平面EAFH,
∴EA∥HF.
∴HF∥CD.
∵E、F分别是AB、PD的中点,
∴EA∥HF∥CD,EA=HF=CD.
∴四边形EAFH是平行四边形.
∴AF∥EH.…(5分)
(Ⅱ)证明:∵PA⊥平面ABCD,AD⊥CD,AD是PD在平面ABCD内的射影,
∴PD⊥CD.
∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°.
∴△PAD是等腰Rt△,又F是斜边PD上的中点,
∴AF⊥PD.
∵AF在平面ABCD内的射影AD⊥CD,
∴AF⊥CD,而PD∩CD=D.
∴AF⊥平面PCD.
∵EH∥AF,∴EH⊥平面PCD.
又EH?平面PCE,∴平面PCE上平面PCD.…(9分)
(Ⅲ)解:由上面的证明可知,PF⊥平面EAFH,四边形EAFH是矩形,
∵PA=AD=a,


=
∴V多面体ECDAHF=VP-AECD-VP-EAFH=.…(13分)
点评:本题考查线面平行的判定与性质,考查面面垂直,考查多面体体积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2004•朝阳区一模)如图,已知PA垂直于正方形ABCD所在的平面,E、F分别为AB、PD的中点,过AE、AF的平面交PC于点H,二面角P-CD-B为45°,PA=a.
(Ⅰ)求证:AF∥EH;
(Ⅱ)求证:平面PCE⊥平面PCD; 
(Ⅲ)求多面体ECDAHF的体积.

查看答案和解析>>

科目:高中数学 来源:南充高中2008-2009学年高二下学期第四次月考数学试题(理) 题型:044

如图,已知PA垂直于⊙O所在平面,AB是⊙O的直径,点C为圆周上异于AB的一点.

(1)若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.那么四面体P-ABC的直度为多少?说明理由;

(2)在四面体P-ABC中,AP=AB=1,设.若动点M在四面体P-ABC表面上运动,并且总保持PB⊥AM.设为动点M的轨迹围成的封闭图形的面积关于角的函数,求取最大值时,二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中数学 来源:四川省南充高中2008-2009学年高二下学期第四次月考数学文 题型:044

如图,已知PA垂直于⊙O所在平面,AB是⊙O的直径,点C为圆周上异于AB的一点.

(1)若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.那么四面体P-ABC的直度为多少?说明理由;

(2)如图,若四面体P-ABC中,AP=AB=1,AE⊥PB,垂足为E,AF⊥PC,垂足为F.设∠EAF=为△AEF面积的函数,求取最大值时二面角A-PB-C的大小.

查看答案和解析>>

科目:高中数学 来源:朝阳区一模 题型:解答题

如图,已知PA垂直于正方形ABCD所在的平面,E、F分别为AB、PD的中点,过AE、AF的平面交PC于点H,二面角P-CD-B为45°,PA=a.
(Ⅰ)求证:AFEH;
(Ⅱ)求证:平面PCE⊥平面PCD; 
(Ⅲ)求多面体ECDAHF的体积.
精英家教网

查看答案和解析>>

同步练习册答案