精英家教网 > 高中数学 > 题目详情
8.已知函数$f(x)=2\sqrt{3}sinxcosx-2{sin^2}x+2$.
(1)求f(x)最小正周期和单调区间;
(2)当$x∈[0,\frac{π}{2}]$时,求f(x)的最大值和最小值.

分析 (1)由三角函数公式化简可得f(x)=2sin(2x+$\frac{π}{6}$)+1,由周期公式可得,解2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得单调递增区间,同理可得单调递减区间;
(2)由题意可得2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],当2x+$\frac{π}{6}$=$\frac{7π}{6}$和2x+$\frac{π}{6}$=$\frac{π}{2}$时,函数分别取最小和大值,代值计算可得.

解答 解:(1)由三角函数公式化简可得$f(x)=2\sqrt{3}sinxcosx-2{sin^2}x+2$
=$\sqrt{3}$sin2x+cos2x+1=2sin(2x+$\frac{π}{6}$)+1,∴最小正周期T=$\frac{2π}{2}$=π,
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可解得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
故函数的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z;
同理可得函数的单调递减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z;
(2)∵$x∈[0,\frac{π}{2}]$,∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴当2x+$\frac{π}{6}$=$\frac{7π}{6}$即x=$\frac{π}{2}$时,函数取最小值0,
当2x+$\frac{π}{6}$=$\frac{π}{2}$即x=$\frac{π}{6}$时,函数取最大值3.

点评 本题考查三角函数恒等变换,涉及三角函数的单调性和最值及周期性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|2x-m|(m∈R),g(x)=x-1.
(1)当m=3时,求不等式f(x)≤g(x)的解集;
(2)若对于任意实数x,f(x)-g(x)>2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知角A、B、C的对边分别为a,b,c,且tanAtanC=$\frac{1}{2cosAcosC}$+1.
(1)求B的大小;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{1}{2}$b2,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若集合A={x|x2-x-6≤0},B={x|x>1},则A∪B={x|x≥-2},(∁RA)∩B={x|x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数c>0,c≠1,设有两个命题:命题p:函数y=cx是R上的单调减函数;命题q:对于?x∈R,不等式x2+x+$\frac{c}{2}$>0恒成立.若命题p∨q为真,p∧q为假,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=($\frac{1}{2}$)x-log2x的零点为x0,则(  )
A.x0<1B.x0>3C.2<x0<3D.1<x0<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左焦点为圆心,且经过此双曲线右顶点的圆的标准方程为(  )
A.(x-3)2+y2=25B.(x-3)2+y2=16C.(x+3)2+y2=16D.(x+3)2+y2=25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.平面向量$\overrightarrow a,\overrightarrow{b,}$$\overrightarrow e$满足$|{\overrightarrow e}|=1,\overrightarrow a•\overrightarrow e=1,\overrightarrow b•\overrightarrow e=2,|{\overrightarrow a-\overrightarrow b}$|=2,当$|{\overrightarrow a}$|=$\frac{\sqrt{7}}{2}$,$|{\overrightarrow b}$|=$\frac{\sqrt{19}}{2}$时,$\overrightarrow a•\overrightarrow b$的最小值为$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案