分析 (Ⅰ)连接OQ、OP,则△OQP为直角三角形,利用|PQ|=|PA|,求P点的轨迹方程;
(Ⅱ)表示出|PQ|,利用配方法求|PQ|的最小值;
(Ⅲ) $|{OP}|=\sqrt{{a^2}+{b^2}}=\sqrt{{a^2}+{{(-2a+3)}^2}}=\sqrt{5{{(a-\frac{6}{5})}^2}+\frac{9}{5}}$,故当$a=\frac{6}{5}$时,${|{OP}|_{min}}=\frac{3}{5}\sqrt{5}$.此时,$b=-2a+3=\frac{3}{5}$,${R_{min}}=\frac{3}{5}\sqrt{5}-1$,即可求出半径最小的圆的方程.
解答 解:(Ⅰ)连OP,∵Q为切点,PQ⊥OQ,由勾股定理有|PQ|2=|OP|2-|OQ|2.
又由已知|PQ|=|PA|,故|PQ|2=|PA|2.
即:(a2+b2)-12=(a-2)2+(b-1)2.
化简得实数a、b间满足的等量关系为:2a+b-3=0.
(Ⅱ)由2a+b-3=0,得b=-2a+3.$|{PQ}|=\sqrt{{a^2}+{b^2}-1}=\sqrt{{a^2}+{{(-2a+3)}^2}-1}$=$\sqrt{5{a^2}-12a+8}$=$\sqrt{5{{(a-\frac{6}{5})}^2}+\frac{4}{5}}$,
故当$a=\frac{6}{5}$时,${|{PQ}|_{min}}=\frac{2}{5}\sqrt{5}$.即线段PQ长的最小值为$\frac{2}{5}\sqrt{5}$.
(Ⅲ)设圆P 的半径为R,∵圆P与圆O有公共点,圆 O的半径为1,∴|R-1|≤|OP|≤R+1.即R≥||OP|-1|且R≤|OP|+1.
而$|{OP}|=\sqrt{{a^2}+{b^2}}=\sqrt{{a^2}+{{(-2a+3)}^2}}=\sqrt{5{{(a-\frac{6}{5})}^2}+\frac{9}{5}}$,
故当$a=\frac{6}{5}$时,${|{OP}|_{min}}=\frac{3}{5}\sqrt{5}$.
此时,$b=-2a+3=\frac{3}{5}$,${R_{min}}=\frac{3}{5}\sqrt{5}-1$.
得半径取最小值时圆P的方程为${(x-\frac{6}{5})^2}+{(y-\frac{3}{5})^2}={(\frac{3}{5}\sqrt{5}-1)^2}$.
点评 本题考查轨迹方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $3+2\sqrt{2}$ | B. | $4\sqrt{2}$ | C. | 4+2$\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com