【题目】已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,在区间(﹣∞,0)单调递增且f(﹣1)=0.若实数a满足 ,则实数a的取值范围是( )
A.[1,2]
B.
C.(0,2]
D.
【答案】D
【解析】解:f(x)为奇函数; ∴f(1)=﹣f(﹣1)=0,且 ;
∴由 得,2f(log2a)≤0;
∴f(log2a)≤0;
①若a>1,log2a>0,根据题意f(x)在(0,+∞)上单调递增;
∴由f(log2a)≤0得,f(log2a)≤f(1);
∴log2a≤1;
∴1<a≤2;
②若0<a<1,log2a<0,f(x)在(﹣∞,0)上单调递增;
∴由f(log2a)≤0得,f(log2a)≤f(﹣1);
∴log2a≤﹣1;
∴ ;
∴综上得,实数a的取值范围是 .
故选D.
【考点精析】解答此题的关键在于理解奇偶性与单调性的综合的相关知识,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=( )x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是( )
A.(2,3)
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四边形ABCD中, =(2,﹣2), =(x,y), =(1, ).
(1)若 ∥ ,求x,y之间的关系式;
(2)满足(1)的同时又有 ⊥ ,求x,y的值以及四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(x2+tx+2)(t为常数,且﹣2 <t<2 ).
(1)当x∈[0,2]时,求函数f(x)的最小值(用t表示);
(2)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出实数t的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已经集合A={x|(8x﹣1)(x﹣1)≤0};集合C={x|a<x<2a+5}
(1)若 ,求实数t的取值集合B;
(2)在(1)的条件下,若(A∪B)C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,.数列满足,,且.
(1)求数列和的通项公式;
(2)若,数列的前项和为,对任意的,都有,求实数的取值范围;
(3)是否存在正整数,,使,,()成等差数列,若存在,求出所有满足条件的,,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣1.
(1)对于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求实数m的取值范围;
(2)若对任意实数x1∈[1,2].存在实数x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com