精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的通项公式an=$\frac{n+1}{n+2}$(n∈N+),设{an}的前n项积为sn,则使sn<$\frac{1}{32}$成立的自然数n(  )
A.有最大值62B.有最小值63C.有最大值62D.有最小值31

分析 利用数列的通项公式,求出乘积,结合不等式求出n的最小值即可.

解答 解:数列{an}的通项公式an=$\frac{n+1}{n+2}$(n∈N+),设{an}的前n项积为sn
sn=$\frac{2}{3}•\frac{3}{4}•\frac{4}{5}…\frac{n+1}{n+2}$=$\frac{2}{n+2}$,
使sn<$\frac{1}{32}$成立,
可得$\frac{2}{n+2}<\frac{1}{32}$,
解得n>62,
则使sn<$\frac{1}{32}$成立的自然数n为63.
故选:B.

点评 本题考查数列的应用,数列与不等式相结合,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.关于x的不等式组$\left\{\begin{array}{l}{{x}^{2}-2x>0}\\{{2x}^{2}+(2k+5)x+5k<0}\end{array}\right.$的整数解的集合为{-2,-1},则实数k的取值范围为-3≤k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则 (  )
A.S≥2PB.P<S<2PC.S>PD.P≤S<2P

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在某项测量中,测量结果X服从正态分布N(1,σ2),若X在区间(0,1)内取值的概率为0.4,则X在区间(0,+∞)内取值的概率是(  )
A.0.6B.0.9C.0.4D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=x2sinx的导数为(  )
A.y′=2xcosx+x2sinxB.y′=2xcosx-x2sinx
C.y′=2xsinx+x2cosxD.y′=2xsinx-x2cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3+ax2+b满足f(1)=0,且在x=2时函数取得极值.
(1)求a,b的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在区间[0,t](t>0)上的最大值g(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列4个命题:
①?x∈R,x2-x+1≤0;
②已知随机变量X服从正态分布N(3,σ2),P(X≤6)=0.72,则P(X≤0)=0.28;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
④已知$\overrightarrow{a}$是单位向量,|$\overrightarrow{a}$+$\overrightarrow{e}$|=|$\overrightarrow{a}$-2$\overrightarrow{e}$|,则$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影为$\frac{1}{2}$,
其中正确命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=5,则不等式exf(x)>4+ex的解集为(  )
A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(-∞,0)∪(3,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an}中,a2=$\frac{1}{2},{a_4}$=2,则a6=(  )
A.8B.-8C.-8或8D.4

查看答案和解析>>

同步练习册答案