【题目】设f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
【答案】(Ⅰ)当时,函数单调递增区间为,当时,函数单调递增区间为,单调递减区间为; (Ⅱ)
【解析】试题分析:(Ⅰ)先求出,然后讨论当时,当时的两种情况即得.
(Ⅱ)分以下情况讨论:①当时,②当时,③当时,④当时,综合即得.
试题解析:(Ⅰ)由
可得,
则,
当时,
时, ,函数单调递增;
当时,
时, ,函数单调递增,
时, ,函数单调递减.
所以当时, 单调递增区间为;
当时,函数单调递增区间为,单调递减区间为.
(Ⅱ)由(Ⅰ)知, .
①当时, , 单调递减.
所以当时, , 单调递减.
当时, , 单调递增.
所以在x=1处取得极小值,不合题意.
②当时, ,由(Ⅰ)知在内单调递增,
可得当当时, , 时, ,
所以在(0,1)内单调递减,在内单调递增,
所以在x=1处取得极小值,不合题意.
③当时,即时, 在(0,1)内单调递增,在内单调递减,
所以当时, , 单调递减,不合题意.
④当时,即,当时, , 单调递增,
当时, , 单调递减,
所以f(x)在x=1处取得极大值,合题意.
综上可知,实数a的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆的左右顶点分别是,为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.
(1)若的面积是的面积的,求直线的方程;
(2)设直线与直线的斜率分别为,求证:为定值;
(3)若的延长线交直线于点,求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,△ABC是以BC为斜边的等腰直角三角形,△BCD是边长为2的正三角形.
(Ⅰ)当AD为多长时,?
(Ⅱ)当二面角B﹣AC﹣D为时,求AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市有一直角梯形绿地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.现过边界CD上的点E处铺设一条直的灌溉水管EF,将绿地分成面积相等的两部分.
(1)如图①,若E为CD的中点,F在边界AB上,求灌溉水管EF的长度;
(2)如图②,若F在边界AD上,求灌溉水管EF的最短长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的列联表:
(1)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为,求的分布列和数学期望;
(2)根据表3中数据,能否认为爱好羽毛球运动与性别有关?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命题“log2g(x)<1”是真命题,求x的取值范围;
g(x)<0.若p∧q是真命题,求m的取值范围.
(2)设命题p:x∈(1,+∞),f(x)<0或g(x)<0;命题q:x∈(﹣1,0),f(x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的平均数、众数和中位数;
(3)在月平均用电量为,,,,的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房心理预测调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表:
买房 | 不买房 | 纠结 | |
城市人 | 5 | 15 | |
农村人 | 20 | 10 |
已知样本中城市人数与农村人数之比是3:8.
(Ⅰ)分别求样本中城市人中的不买房人数和农村人中的纠结人数;
(Ⅱ)从参与调研的城市人中用分层抽样方法抽取6人,进一步统计城市人的某项收入指标,假设一个买房人的指标算作3,一个纠结人的指标算作2,一个不买房人的指标算作1,现在从这6人中再随机选取3人,令X=再抽取3人指标之和,求X的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com