精英家教网 > 高中数学 > 题目详情
(2009•枣庄一模)定义运算法则如下:a?b=a
1
2
+b-
1
3
,a*b=lga2-lgb
1
2
M=2
1
4
?
8
125
,N=
2
*
1
25

f(x)=
log3x(x>0)
2x,(x≤0)
f[f(N-
2
9
M)]
=
1
4
1
4
分析:首先由新定义化简N和M,求出N-
2
9
M=1-
2
9
×4=
1
9
,然后求出f(
1
9
)=-2,最后把-2代入函数解析式求值.
解答:解:由题意知N=
2
*
1
25
=lg(
2
)2-lg(
1
25
)
1
2
=lg2+lg5=1

M=2
1
4
?
8
125
=(
9
4
)
1
2
+(
8
125
)-
1
3
=
3
2
+
5
2
=4

N-
2
9
M=1-
2
9
×4=
1
9

f(x)=
log3x(x>0)
2x,(x≤0)

所以f(N-
2
9
M)=f(
1
9
)=log3
1
9
=-2

f(-2)=2-2=
1
4

故答案为
1
4
点评:本题是新定义题,考查了指数式的化简与求值,考查了对数式的运算性质,解答的关键是对新定义的理解与运用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•枣庄一模)已知数列{an}的各项均是正数,其前n项和为Sn,满足(p-1)Sn=p2-an,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)设bn=
12-logpan
(n∈N*),求数列{bnbn+1}的前n项和Tn
的取值范围;
(3)是否存在正整数M,使得n>M时,a1a4a7…a3n-2>a78恒成立?若存在,求出相应的M的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)设(5x-
1
x
)n
的展开式的各项系数和为M,二项式系数和为N,若M-N=240,则展开式中x的系数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)先后抛掷两枚骰子,每次各1枚,求下列事件发生的概率:
(1)事件A:“出现的点数之和大于3”;
(2)事件B:“出现的点数之积是3的倍数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)设复数z的共轭复数是
.
z
,若复数z1=3+4i,z2=t+i,且z1
.
z2
是实数,则实数t=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)一个几何体的三视图如图所示,则该几何体外接球的表面积为(  )

查看答案和解析>>

同步练习册答案