精英家教网 > 高中数学 > 题目详情

【题目】中央政府为了对应因人口老龄化而造成的劳动力短缺等问题,拟定出台延迟退休年龄政策,为了了解人们对延迟退休年龄政策的态度,责成人社部进行调研,人社部从网上年龄在1565的人群中随机调查50人,调查数据的频率分布直方图和支持延迟退休的人数与年龄的统计结果如下:

1)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对延迟退休年龄政策的支持度有差异:

2)若从年龄在的被调查人中随机选取两人进行调查,求选中的2人中恰有1人支持延迟退休的概率.

参考数据:

.

【答案】1)填表见解析;有90%的把握认为以45岁为分界点对延迟退休年龄政策的支持度有差异(20.6

【解析】

1)根据统计数据,可得2×2列联表,根据列联表中的数据,计算的值,可得答案;

2)可得年龄在的被调查人共5人,可得随机选取两人共10种抽取方法,选中的2人中恰有1人支持延迟退休6种抽取方法,可得选中的2人中恰有1人支持延迟退休的概率.

:1)由频率分布直方图知,被调查的50人中年龄在45岁以上的人数为,年龄在45岁以下的人数为50-10=40,其中45岁以上支持“延迟退休”的人数为3,45岁以下支持“延迟退休”人数为25人,则2×2列联表如下:

年龄45岁以下人数

年龄45岁以上人数

合计

支持

25

3

28

不支持

15

7

22

合计

40

10

50

.

所以有的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异.

(2)可得年龄在的被调查人共人,其中支持延迟退休2人,不支持延迟退休3人,可得随机选取两人共种抽取方法,选中的2人中恰有1人支持延迟退休种抽取方法,

可得:选中的2人中恰有1人支持延迟退休概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下图所示.

(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

(Ⅱ)若按分层抽样的方法从年龄在以内及以内的市民中随机抽取5人,再从这5人中随机抽取2人进行调研,求抽取的2人中,至多1人年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的出现,为我们提供了一种新型的交通方式。某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

1)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);

2)若得分不低于80分,则认为该用户对此种交通方式认可,否则认为该用户对此种交通方式不认可,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;

A

B

合计

认可

不认可

合计

3)在AB城市对此种交通方式认可的用户中按照分层抽样的方法抽取6人,若在此6人中推荐2人参加单车维护志愿活动,求A城市中至少有1人的概率。

参考数据如下:(下面临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】足球是当今世界传播范围最广、参与人数最多的体育运动,具有广泛的社会影响,深受世界各国民众喜爱.

1)为调查大学生喜欢足球是否与性别有关,随机选取50名大学生进行问卷调查,当问卷评分不低于80分则认为喜欢足球,当评分低于80分则认为不喜欢足球,这50名大学生问卷评分的结果用茎叶图表示如图:

请依据上述数据填写如下列联表:

喜欢足球

不喜欢足球

总计

女生

男生

总计

请问是否有 的把握认为喜欢足球与性别有关?

参考公式及数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

2)已知某国糖果盒足球场每年平均上座率与该国成年男子国家足球队在国际足联的年度排名线性相关,数据如表

年度排名

9

6

3

平均上座率

0.9

0.91

0.92

0.93

0.95

求变量的线性回归方程,并预测排名为1时该球场的上座率.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下所示.

1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

2)若按分层抽样的方法从年龄在以及内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽取的3人中,年龄在内的人数为,求的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分,()小问5分,()小问8.

甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:()打满3局比赛还未停止的概率;()比赛停止时已打局数的分别列与期望E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数,当时,.

1)求出函数R上的解析式;

2)画出函数的图象,并根据图象写出的单调区间.

3)求使时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)若相交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxx+1xR.

1)求函数fx)的最小正周期并写出函数fx)图象的对称轴方程和对称中心;

2)求函数fx)在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案