精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为,上、下顶点分别为.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.

(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.
(1),(2)相切,(3).

试题分析:(1)求椭圆E的离心率,只需列出关于的一个等量关系就可解出. 因为直线的倾斜角的正弦值为,所以,即,(2)判断直线与圆的位置关系,通常利用圆心到直线距离与半径大小比较. 因为直线的倾斜角的正弦值为,所以直线的斜率为于是的方程为:,因此中点到直线距离为所以直线与圆相切,又圆与以线段为直径的圆关于直线对称,直线与圆相切.(3)由圆的面积为知圆半径为1,所以关于直线的对称点为,则解得.所以,圆的方程为
【解】(1)设椭圆E的焦距为2c(c>0),
因为直线的倾斜角的正弦值为,所以
于是,即,所以椭圆E的离心率  
(2)由可设,则
于是的方程为:
的中点的距离,         又以为直径的圆的半径,即有
所以直线与圆相切.
(3)由圆的面积为知圆半径为1,从而,         
的中点关于直线的对称点为

解得.所以,圆的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为,且离心率为
(1)求椭圆方程;
(2)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线与椭圆有相同的焦点,则该双曲线的渐近线方程为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与椭圆相交于两点,过点轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知(4,2)是直线l被椭圆所截得的线段的中点,则l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为 (    )
A.10B.5C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的方程C:),若椭圆的离心率,则的取值范围是.

查看答案和解析>>

同步练习册答案